## 2024학년도 6평 평가원 대비 디올 모의고사 생명과학II <br> 가탁 여ㅇㅕㅕ

0 자신이 선택한 과목의 문제지인지 확인하시오.
0 매 선택과목마다 문제지의 해당란에 성명과 수험번호를 정확히 쓰시오.
○ 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

## 나의 꿈은 맑은 바람이 되어서

○ 답안지의 해당란에 성명과 수험번호를 쓰고, 또 수험번호와 답을 정확히 표 시하시오.

○ 선택한 과목 순서대로 문제를 풀고, 답은 답안지의 '제 1선택'란부터 차례대로 표시하시오.

○ 문항에 따라 배점이 다릅니다. 3점 문항에는 점수가 표시되어 있습니다. 점수 표시가 없는 문항은 모두 2점입니다.

○ 정오 사항이 있다면 디올클래스(Hyunubio.com), 영상 해설은 Hyunu 유튜브에 올려두겠습니다. 문항 문의는 Insta : hyunu_insta로 남겨주세요.
물리 I ..... 1, 2, 31, 32 쪽
화하 I ..... $3,4,29,30$ 쪽
생명 과학 I ..... 5, 6, 27, 28 쪽
지구 과학 I ..... $7,8,25,26$ 쪽
물리 II ..... 9, 10, 23, 24 쪽
화학 II ..... 11, 12, 21, 22 쪽
생명 과하 II ..... $13,14,19,20$ 쪽
지구 과학 II ..... $15,16,17,18$ 쪽
※ 감독관의 안내가 있을 때까지 표지를 넘기지 마시오.

# 2024학년도 6월 평가원 대비 디올 모의고사 <br> 제 4 교시 개하탐구 영여(생명과학 II) 

성명 Hyume | 수험번호 |  |  | - |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 제 (2) 선택 |  |  |  |  |  |

1. (가)~(다)는 생명 과학의 주요 성과이다.
(가) 린네는 종의 개념을 명확히 하고 이명법을 고안하였다. (나) 멘델은 형질이 유전 인자의 형태로 전달된다는 것을 밝혔다. (다) 플레밍은 (a)에서 페니실린을 발견하였다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

## <보 기>

ㄱ. (가)에 RPA A의 염기 서열이 활용되었다.
ㄴ. (a)는 펩티조를리칸 성분의 세포벽을 갖는다.
ㄷ. (나)는 (다)보다 먼저 이룬 성과이다.
(1) ᄂ
(12) ᄃ
(3) ᄀ, ᄂ
(4) ᄀ, ᄃ
(5) ᄂ, ᄃ
2. 그림은 세포막을 통한 물질 이동 방식 (가)~(다)의 공통점과 차이점을, 표는 특징 (ㄱ)~ (ㄷ)을 나타낸 것이다. (가)~(다)는 단순 확산, 촉진 확산, 능동 수송을 순서 없이 나타낸 것이다.


L

| 구분 | 특징 |
| :---: | :---: |
| (ㄱ) | ? |
| (ㄴ) | 막단백질을 이용한다. |
| (ㄷ) | ATP가 사용된다. |

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 겻은? [3 점]

## <보 기>

ㄱ. (가)는 촉진 확산이다.
ㄴ. $\mathrm{Na}^{+}-\mathrm{K}^{+}$폄프를 통한 $\mathrm{K}^{+}$의 이동 방식은 (다)에 해당한다.
ㄷ. '고농도에서 저농도로 물질이 이동한다'는 (ㄱ)에 해당한다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ

- ᄀ, ᄂ, ᄃ

3. 표는 세포 (가)~(다)에서 세포 소기관 $\mathrm{A} \sim \mathrm{C}$ 의 유무를, 그림은 (가)~(다) 중 하나의 구조를 나타낸 것이다. (가)~(다)는 대장균, 시금치의 공변세포, 동물의 근육 세포를 순서 없이 나타낸 것이고, $\mathrm{A} \sim \mathrm{C}$ 는 세포벽, 리보솜, 엽록체를 순서 없이 나타낸 것이다.

| 구분 | A | B | C |  |
| :---: | :---: | :---: | :---: | :---: |
| (가) | 0 | $\times$ | $\times$ |  |
| (나) | (a) | $\times$ | 0 |  |
| (다) | 0 | 0 | (b) |  |
| (있음, $\times$ 없음) |  |  |  |  |



이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

## <보 기>

ㄱ. (a)와 (b)는 모두 ' O ' 이다.
ㄴ. 그림은 (각의 구조를 나타낸 것이다.
ㄷ. 세포질에 있는 A 의 크기는 (나)가 (다)보다 크다.
(3) ᄀ, ᄂ
(4) ᄀ, ᄃ
(5) ᄂ, ᄃ
4. 그림은 (가)장미 잎의 단면을 나타낸 것이다. $\mathrm{A} \sim \mathrm{C}$ 는 각각 유조직, 표피 조직, 관다발 조직계 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?


## <보 기>

ㄱ. (ㄱ7)의 A 에는 형성층이 포함된다.
ㄴ. B 는 분옃 조적에 해당한다.
ㄷ. C 는 기본 조직계에 속한다.
(1) ᄀ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄀ, ᄃ
(5) ᄀ, ᄂ, ᄃ
5. 그림 (가)는 사람의 근육 세포에서, (나)는 효모에서 일어나는 발효와 산소 호흡 과정의 일부를 나타낸 것이다. (ㄱ)~ (ㄷ)은 젖산, 에탄올, 아세틸 CoA 를 순서 없이 나타낸 것이며, (가)와 (ㄴ)ㄴ는 NAD 와 NADH 를 순서 없이 나타낸 것이다.

(가)

(나)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

〈보 기〉
ㄱ. (ㄱㄱ는 $\mathrm{NADH}{ }^{\circ}$ 다.
ㄴ. I 에서 (나가 생성된다.
ㄷ. $\mathrm{I} \sim \mathrm{IV}$ 에서 모두 ATP가 생성되지 않는다.
(1) ᄂ
(2) ᄃ
(3) ᄀ. ᄂ
(4) ᄀ, ᄃ
(5) ᄀ, ᄂ, ᄃ
6. 다음은 세포 (ㄱ) ~(ㄷ)에 대한 자료이다. (ㄱ)~(ㄷ)은 시금치에서 광합성이 일어나는 세포, 사람의 상피 세포, 대장균을 순서 없이 나타낸 것이다.

- (ㄱㄱㅘ (ㄴ)은 모두 골지체를 갖는다.
- (낙과 다은 모두 세포벽을 갖는다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

## <보 기>

ㄱ. (ㄱ)은 식금차에서 광합성이 일어나는 세포이다.
ㄴ. (ㄴ)은 미토콘드리아를 갖는다.
ㄷ. (ㄷ)은 원형 DNA 를 갖는다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄃ (4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ

## 2 (생명과학 II)

과학탐구 영역
7. 그림 (가)는 사람의 소화 효소 $\mathrm{A} \sim \mathrm{C}$ 에 의한 반응에서 pH 에 따른 반응 속도를, (나)는 pH 7 인 녹말 용액에 B 를 넣었을 때 녹말이 (가) 엿당으로 분해되는 반응의 에너지 변화를 나타낸 것이다.

(가)

(나)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

## <보 기>

ㄱ. (가)는 단뒹류이다
ㄴ. (가)에서 A 의 활성이 최대인 pH 는 C 의 활성이 최대인 pH 보다 낮다.
ㄷ. pH 7 인 녹말 용액에 A 를 넣었을 때, 녹말이 엿당으로 분해되는 반응의 활성화 에너지는 (나)의 $E$ 보다 크다.
(1) ᄀ
(2) ᄂ
(3) ᄃ
(4) ᄀ, ᄃ
(5) ᄂ, ᄃ
8. 표는 세포 (ㄱ)을 구성하는 물질 $\mathrm{A} \sim \mathrm{D}$ 의 특징을, 그림은 $\mathrm{A} \sim \mathrm{D}$ 중 하나를 나타낸 것이다. $\mathrm{A} \sim \mathrm{D}$ 는 RNA , 단백질, 인지질, 글리코젠을 순서 없이 나타낸 것이다. (ㄱ)은 동물 세포와 식물 세포 중 하나이다.

| 특징 |
| :---: |
| - A 와 B 는 모두 구성 원소에 인(P)가 있다. |
| OA왈는 모두 세포막의 구성 성분이다.. |
| - 당은 B 와 듹 싕분이다. |



이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

## <보 기>

ㄱ. (ㄱ)은 식물 세포이다.
ㄴ. B 의 기본 단위는 뉴클레오타이드이다.
ㄷ. 그림응 D이다. $^{\text {. }}$
(d) ᄂ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄀ, ᄃ
(5) ᄂ, ᄃ
9. 그림은 세포 호흡이 활발한 어떤 세포의 미토콘드리아에서 일어나는 산화적 인산화 과정의 일부를, 표는 이 세포의 세포 호흡 과정 (가)~(다)에서 물질 전환 결과 생성되는 (ㄱ)~(ㄹ)의 분자 수의 비를 나타낸 것이다. $\mathrm{A} \sim \mathrm{E}$ 는 과당 2 인산, 피루브산, 시트르산, 옥살아세트산, 아세틸 CoA 를 순서 없이 나타낸 것이고, (ㄱ)~(ㄹ)은 $\mathrm{ATP}, \mathrm{CO}_{2}, \mathrm{NADH}, \mathrm{FADH}_{2}$ 를 순서 없이 나타낸 것이다. I 과 ㅍ는 각각 미토콘드리아 기질과 막 사이 공간 중 하나이다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?
<보 기>

ㄱ. (다)는 L예서 일어난다.
ㄴ. (b)는 (a)보다 크다.
ㄷ. 1 분자당 탄소 수는 B 가 C 보다 많다.
(2) ᄂ
(3) ᄃ
(4) ᄀ, ᄂ
(15) ᄂ, ᄃ
10. 다음은 캘빈 회로에서 물질의 전환 과정에 대한 자료이다. (ㄱ)~(ㄷ)은 $3 \mathrm{PG}, \mathrm{PGAL}, \mathrm{RuBP}$ 을 순서 없이 나타낸 것이며, I 은 (ㄴ)이 (ㄱ)으로 ㅍ는 (ㄱ)이 (ㄴ)으로 전환되는 과정이다. (a)와 (b)는 ATP와 NADPI를 순서 없이 나타낸 것이며 (ㄱㄱㅘ (ㄴ)의 1 분자 당 인산기 수는 다르다.

- I 과 $\Pi$ 에서 모두 (a)가 사용된다.
- $\Pi$ 에서 $\mathrm{CO}_{2}$ 고정이 일어난다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3 점]

ㄱ. (ㄷ)은 PGAIV다.
ㄴ. I 에서 (B)가 쉬횽된다. < 보 기


ㄷ. $\Pi$ 에서 생성되는 $\mathrm{NADP}^{+}$분자 수와 사용되는 $\mathrm{AATP}^{\text {분자 }}$ 수는 같다.
(1) ᄂ
(1) ᄃ
(3) ᄀ, ᄂ
(4) ᄀ, ᄃ
(5) ᄂ, ᄃ
11. 다음은 알코올 발효에 대한 실험이다.

## 〔실험 과정 및 결과〕

(가) 알코올 발효에 필요한 효소, 조효소, ADP 와 $\mathrm{P}_{i}$ 이 충분히 담긴 시험관 $\mathrm{I} \sim \mathrm{IV}$ 를 준비한다.
(나) (가)의 $\mathrm{I} \sim \mathrm{IV}$ 에 각각 표와 같이 포도당, ATP , 과당 2 인산을 첨가한 후 $\mathrm{I} \sim \mathrm{IV}$ 를 밀폐하여 $\mathrm{O}_{2}$ 가 없는 조건으로 만든다.
(다) (나)에서 첨가한 물질의 양과 발생한 $\mathrm{CO}_{2}$ 총량은 표와 같다. (ㄱ) ~(ㄹ)은 $0,1,2,4$ 를 순서 없이 나타낸 것이다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외의 다른 조건은 동일하다.) [3점]

## -<보 기>

ㄱ. (ㄹ)은 1 이다.
ㄴ. $\mathrm{I} \sim \mathrm{IV}$ 에서 므ㄹㅜㅜ 해당 과정이 일어났다.
ㄷ. 반응이 끝난 후 시험관 내 ATP 양은 $\Pi$ 에서가 IV에서 보다 많다.
(1) ᄀ
(2) ᄂ
ㄱ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
12. 표는 효소 (가)~(다)의 작용을 나타낸 것이다. (가)~(다)는 가수 분해 효소, 산화 환원 효소, 이성질화 효소를 순서 없이 나타낸 것이다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

## <보 기>

ㄱ. ATP 합성 효소는 (가)에 속한다.
ㄴ. (나)에 의한 반응은 발열 반응이다.
ㄷ. 탈수소 효소는 (다)에 속한다.
(1) ᄀ
(2) ᄃ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
13. 표 (가)는 순환적 광인산화와 비순환적 광인산화에서 X 와 Y 의 관여 여부를, (나)는 광합성이 활발히 일어나고 있는 어떤 식물 엽록체에서 일어나는 (ㄱㄱㄱㅘ (ㄴ)에서 물질 (a)~ (c)의 생성 여부를 나타낸 것이다. X 와 Y 는 광계 I 과 광계 $\Pi$ 를 순서 없이 나타낸 것이고, (ㄱㄱㄱㅘ (ㄴ)은 순환적 광인산화와 비순환적 광인산화를 순서 없이 나타낸 것이며, (a)~ (c)는 $\mathrm{O}_{2}$, NADPH, ATP를 순서 없이 나타낸 것이다. (b)는 (ㄱ)의 최종 전자 수용체에 전자가 전달되어 생성된다.

| 구분 | $\mathrm{X}^{\text {I }}$ | Y |
| :---: | :---: | :---: |
| 순환적 광인산화 | 0 | 2 |
| 비순환적 광인산화 | (굥 | 0 |
| (완여함, $x:$ 관여 안 함) |  |  |

(가)

(나)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

## <보 기>

ㄱ. Y 의 반응 중심 색소는 P 이이다.
ㄴ. (ㄱ7)와 (나)는 모둥 $\mathrm{O}^{\prime}$ 이다.
ㄷ. $\mathrm{H}_{2} \mathrm{O}$ 에서 방출된 전자가 (ㄱ)을 통해 최종 수용체에 전 달될 때 생성되는 (a)의 분자 수 의 값은 $\frac{1}{2}$ 이다.
(1) ᄀ
(2) ᄂ
8.
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
14. 다음은 초파리의 혹스(호미오) 유전자에 대한 자료이다.

> - 그림은 초파리의 3 번 염색체에 있는 혹스 유 전자 (a)~ (h)와 초파리 배아에서 각 유전자의 발현 부위를 나타낸 것이다.

- (e)는 Antp 유전자이고, Antp 단백질을 암호화한다.
- (f)는 $U b x$ 유전자이고, Ubx 단백질을 암호화한다. (ㄱ)과 (ㄴ)은 Antp와 Ubx를 순서 없이 나타낸 것이고, (ㄴ)은 (ㄱ)의 발현과 활성을 억제한다.
- 표는 세포 (가)~(다)에서 Antp 유전자와 $U b x$ 유전자의 발현을 인위적으로 억제할 때, 2 번과 3 번 가슴 체절에서 세포 내 단백질의 종류, 날개 형성 여부를 나타낸 것이다.

| 세포 | (가) |  | (나) |  | (다) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 억제된 유전자 | 앖음 |  | Antp 유전자 |  | $U b x$ 유전자 |  |
| 가슴 체절 | 2 번 | 3 번 | 2 번 | 3 번 | 2 번 | 3 번 |
| 단백질 종류 | (ㄱ) | (ㄱ), (ㄴ) | $?$ | () | (ㄱ) | $?$ |
| 날개 형성 | 0 | $\times$ | $\times$ | $\times$ | 0 | (a) |

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, Antp와 Ubx 이외의 다른 단백질의 작용은 고려하지 않으며 인위적으로 억제된 유전자는 단백질 발현이 일어나지 않는다.) [3 점]

## <보 기>

ㄱ. (a)늦 $\bar{x}$ 이다.
ㄴ. (ㄴ)은 Ubx이다. .
ㄷ. (e)와 (f)는 모두 각 체절에서 만들어질 기관을 결정하는 데 관여한다.
(2) ᄂ
(3) ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
15. 그림은 세포 호흡이 일어나고 있는 미토콘드리아의 TCA 회로 에서 물질 전환 과정 $\mathrm{I} \sim \mathrm{m}$ 을, 표는 과정 (가)~(다)에서 생성되는 물질 (ㄱ)~ (ㄹ)의 분자 수의 비를 나타낸 것이다. 물질 $\mathrm{A} \sim \mathrm{D}$ 는 4 탄소 화합물, 5 탄소 화합물, 시트르산, 옥살아세트산 을 순서 없이 나타낸 것이다. (가)~(다)는 각각 $\mathrm{I} \sim \mathrm{III}$ 중 하나이며, (ㄱ) ~(ㄹ)은 ATP, $\mathrm{CO}_{2}, \mathrm{FADH}_{2}, \mathrm{NADH}$ 를 순서 없이 나타낸 것이다. 1 분자당 $\frac{\text { (의 탄소 수 }}{\mathrm{B} \text { 의 탄소 수 }+\mathrm{D} \text { 의 탄소 수 }}=\frac{3}{4}$ 잉다.
$5 \mathrm{~A} \xrightarrow{1} \mathrm{~B}^{4} 1$
Cc $\xrightarrow{\mathbb{I}} \mathrm{DOA}$
$\mathrm{C} \xrightarrow{\text { III }} \mathrm{B} 4$

| TE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| (가) | 1 | ? | ? | 3 |
| (나) | 1 | 0 | 1 | ? |
| (다) | 1 | ? | 2 | 2 |

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

## <보 기>

ㄱ. (ㄱ)은 $\mathrm{EAP} \mathrm{H}_{2} \mathrm{I}_{2}$ 이다.
ㄴ. I ~III에서 모두 (ㄹ)이 생성된다.

(1) ᄀ
(3) ᄃ
(4) ᄀ, ᄂ
(5) ᄂ, ᄃ
16. 다음은 이중 가닥 $\mathrm{DNA} \mathrm{X} \sim Z$ 에 대한 자료이다.

- X와 Y의 염기 수는 같고, $Z$ 는 300 개의 염기쌍으로 구성되어 있다.
 타이민(T)을 순서 없이 나타낸 것이다. (ㄱ)과 (ㄹ)은 각각 퓨린 계열 염기이고 (ㄴ)과 (ㄷ)은 각각 피리미딘 계열 염기이다. $A T G C$
- Y 에서 구아닌 $(\mathrm{G})$ 의 개수는 240 개이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.) [3점]


## <보 기>

ㄱ. X 에서 뉴클레오타이드의 총개수는 400 개이다
ㄴ. (ㄷ)은 사이토신(C)이다.
ㄷ. 염기 간 수소 결합의 총개수는 Y 에서가 Z 에서보다 160 계 많다.

## 4 (생명과학 II)

과학탐구 영역
17. 다음은 어뗜 진핵생물의 유전자 $x$ 와 돌연변이 유전자 $y, z$ 의 발현에 대한 자료이다.

○ $x, y, z$ 로부터 각각 폴리펩타이드 $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 가 합성된다
○ $x$ 의 DNA 이중 가닥 중 전사 주형 가닥의 염기 서열은 다음과 같다. (ㄱ)~(ㄹ)은 $\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$ 을 순서 없이 나타낸 것이다.


- $y$ 는 $x$ 의 전사 주형 가닥에서 연속된 2 개의 타이민(T)이 -열실된 돌연변이 유전자이고, Y 는 2 개의 글룬탐산과 2 개의 아미노산 (가)를 가진다[7
$0 z$ 는 $y$ 의 전사 주형 가닥에서⒜피리미딘 계열에 속하는
- 서로 다른 연속된 2 개의 염기가 결실되었고 (b) 1 개의 염기가 다른 염기로 치환되었으며, (c) 1 개의 구아닌(G)이 사이토신(C)으로 치환되었다. (a)~(c)의 위치는 서로 다르다.
- Z는 3종류의 아미노산 으로 구성되고, 빌린을 가진다.
$\circ \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 의 합성은 개시 코돈 AUG 에서 시작 하여 종결 코돈에서 끝나고 표는 유전부호 를 나타낸 것이다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 핵산 염기 서열 변화는 고려하지 않는다.) [3점]
<보 기>
ㄱ. (가)는 세린이다.
ㄴ. $X$ 의 아미노산 개수는 6 게이다.
ㄷ. (b)는 (ㄹ)이다.
(b) 7
(2) ᄂ
(3) ᄃ
(4) ᄀ, ᄂ
(5) ᄂ, ᄃ
18. 그림 (가)는 시금치의 틸라코이드 막에 존재하는 광계에서 일어나는 명반응 과정의 일부를, (나)는 이 식물에서 광합성 색소 $X$ 와 Y 의 흡수 스펙트럼을 나타낸 것이다. (ㄱ)과 (ㄴ)은 엽록소 $a$ 와 엽록소 $b$ 를 순서 없이 나타낸 것이고 X 와 Y 는 (ㄱ)과 (ㄴ)을 순서 없이 나타낸 것이다. (a)와 (b)는 각각 스트로마와 틸라코이드 내부 중 하나이다.

(가)

(나)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

## <보 기>

ㄱ. (ㄱ)은 X 이다.
ㄴ. (ㄴ)에서 방출된 전자는 1 차 전자 수용체에 전달된다.
ㄷ. 단위 시간당 전자 전달계를 통해 (a)에서 (b)로 이동하는 $\mathrm{H}^{+}$의 양은 파장이 550 nm 인 빛에서가 650 nm 인 빛에서보다 믿다.
19. 그림은 붉은빵곰팡이에서 아르지닌이 합성되는 과정을, 표는 최소 배지에 물질 (ㄱ)의 첨가에 따른 붉은빵곰팡이 야생형과 돌연변이주 $\mathrm{I} \sim[\mathrm{I}$ 의 생장 여부와 물질 각와 (나)의 합성 여부를 나타낸 것이다. (ㄱ)은 오르니틴, 시트룰린, 아르지닌 중 하나이고, $\mathrm{I} \sim$ III은 각각 유전자 $a \sim c$ 중 서로 다른 하나에만 돌연변이가 일어난 것이며, (가)와 (나는 각각 오르니틴, 시트룰린, 아르지닌 중 하나이다.

$$
\begin{aligned}
& \text { 유전자 } a \rightarrow \text { 효소 } \mathrm{A} \stackrel{\text { 전구 물질 }}{\rightarrow} \\
& \text { 유전자 } b \rightarrow \text { 효소 } \mathrm{B} \frac{\text { 오르니틴 }}{\rightarrow} \\
& \text { 유전자 } c \rightarrow \text { 효소 } \mathrm{C} \xrightarrow[\text { 시트룰린 }]{\rightarrow \text { 아르지닌 }}
\end{aligned}
$$

| 구분 | 최소 배지 |  |  | 최소 배지, (7) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 생장 | $\begin{array}{\|c\|} \hline \text { 갑 } \\ \text { 합성 } \end{array}$ | $\begin{gathered} \hline \text { (4) } \\ \text { 합성 } \end{gathered}$ | 생장 | $\begin{array}{\|c\|} \hline 20 \\ \text { 합성 } \end{array}$ | $\begin{array}{\|c\|} \hline(4) \\ \text { 합성 } \end{array}$ |
| 야생형 | + | $\bigcirc$ | $\bigcirc$ | + | $\bigcirc$ | $\bigcirc$ |
| 8 I | - | ? | $\bigcirc$ | ? | (a) | $\bigcirc$ |
| W II | - | $\bigcirc$ | ? | - | $\bigcirc$ | $\times$ |
| b III | ? | ? | $\times$ | ? | ? | $\bigcirc$ |

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]
ㄱ. (a)는 시다
ㄴ. II은 $a$ 에 돌연변이가 일어난 것이다.
ㄷ. (ㄱㄱㄱㅘ (가)는 서로 두른 물질이다.
(13) $ᄂ$
(2) ᄃ
(3) ᄀ, ᄃ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
20. 다음은 어떤 세포에서 복제 중인 이중 가닥 DNA W에 대한 자료이다.
$\circ \mathrm{W}$ 는 서로 상보적인 단일 가닥 $\mathrm{W}_{1}$ 과 $\mathrm{W}_{2}$ 로 구성되어 있다.

- DNA $w$ 는 $W_{1}$ 의 일부이며, 37 개의 염기로 이루어져 있 고 염기 서열은 다음과 같다. (ㄱ)과 (ㄴ)은 각각 아데닌(A), 구아닌 $(\mathrm{G})$, 사이토신 $(\mathrm{C})$, 타이민 $(\mathrm{T})$ 중 하나이다.
 $\rightarrow$ 를 주형으로 하여 지연 가닥이 합성되는 과정에서 2 개의 가닥 I 과 П가 합성된다.
- w와 I 수너의 염기쌍의 개수는 17 개이고, $w$ 와 II 사이 의 염기쌍의 개수는 20 개이다.
- 프라이머 X 는 I 에, 프라이머 Y 는 $\Pi$ 에 존재한다. X 와 Y 는 각각 5 개의 염기로 구성되며, X 와 Y 에 있는 유라실 $(\mathrm{U})$ 의 개수는 각각 1 개이다.
- $w$ 와 $\sqrt{ }$ 사이의 염기 간 수소 결합의 총개수는 42 객이고, $\Pi$ 에서 퓨린 계열 염기의 개수는 12 개이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.) [3 점]
-<보 기>
ㄱ. $\Pi$ 가 I 보다 먼저 합성되었다.
ㄴ. I 에서 퓨린 계열 염기의 개수는 19 개이다.
ㄷ. (ㄴ)은 애뮦ㄴㄴㄴ(A)이다.
(1) 7
(2) ᄂ
(3) ᄃ
(4) ᄀ, ᄂ
(5) ᄂ, ᄃ

* 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기) 했는지 확인하시오.
(1) ᄀ
(3) ᄃ
(4) ᄀ, ᄂ
(5) ᄂ, ᄃ

