돌연변이 기술 모음집

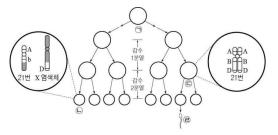
- 돌연변이 평가원, 교육청 기출 문제 중 풀어볼 만한 문제들을 선별해서 넣어두었습니다. 의미 없는 문제, 매우 좋지 않은 문제 등을 제외했습니다.
- 문제를 Part 1과 Part 2로 나누었습니다. Part 1은 기초 문제, Part 2는 그 외의 문제입니다. 유형에 따라 Part 1 문제나 Part 2 문제가 없는 경우도 있습니다.
- 문제만 풀고 넘기지 마시고, 막힌 문제든 틀린 문제든 반드시 해설지를 보면서 피드백을 해주세요.

6. 돌연변이 - ① 돌연변이 ~ ④ 비분리

[Part 1]

1. 2015년 3월 교육청 모의고사 15번

15. 그림은 어떤 남자의 정자 형성 과정을, 표는 정자 ⑤~ⓒ의 핵상과 X 염색체 수를 나타낸 것이다. 정자 형성 과정 중 염색체 비분리가 1회 일어났다.

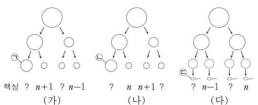

정자	핵상	X 염색체 수(개)
9	n+1	1
(L)	n-1	1
Œ	n	0

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 비분리 이외의 다른 돌연변이는 고려하지 않는다.)

- ___ < 보 기 > ____
- ㄱ. 감수 2분열에서 염색체 비분리가 일어났다.
- ㄴ. ∋의 상염색체 수는 22개이다.
- C. ②과 정상 난자가 수정되어 아이가 태어날 때, 이 아이는 터너 증후군을 나타낸다.

2. 2015년 7월 교육청 모의고사 8번

8. 그림은 핵형이 정상인 어떤 사람의 세포 ①으로부터 정자가 형성되는 과정과 이 과정에서 형성된 세포 ①과 ⓒ에 있는 21번 염색체와 성염색체를 있는 대로 나타낸 것이다. ①과 ②이 형성 되는 감수 분열 과정에서 염색체 돌연변이가 각각 1회 일어났다. 대립 유전자 A, B, D는 각각 a, b, d와 대립 관계이다.

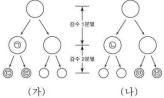


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 다른 돌연변이와 교차는 고려 하지 않는다.) [3점]

- ¬. ⊙에는 대립 유전자 a가 없다.
- ㄴ. ⓒ이 형성되는 감수 분열 과정에서 전좌가 일어났다.
- こ. ②이 정상 난자와 수정되어 태어난 아이는 다운증후군을 나타낸다.

3. 2016년 10월 교육청 모의고사 10번

10. 그림 (가)~(다)는 핵형이 정상인 어떤 세 사람의 생식 세포 형성 과정을 나타낸 것이다. (가)~(다)에서 성염색체 비분리가 각각 1회씩 일어났다.



이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이는 고려하지 않는다.)

- < 보기 > -
- 기. (가)와 (나)에서 모두 상동 염색체의 비분리가 일어났다.사여재체 스
- C. ②과 ⓒ이 수정되어 아이가 태어날 때, 이 아이에게는 클라인펠터 증후군이 나타난다.

4. 2017년 7월 교육청 모의고사 11번

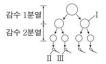
11. 그림은 핵형이 정상인 어떤 남자에서 일어나는 감수 분열 과정 (가)와 (나)를 나타낸 것이다. (가)와 (나)과정에서 성염색체비분리가 각각 1회씩 일어났고, ①에는 Y 염색체가 있으며, ①과 ©의 염색체 수는 서로 같다. ②, ③, ⑤의 염색체 수를 모두합한 값은 72이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?(단, 제시된 염색체 비분리 이외의 다른 돌연변이는 고려하 지 않는다)[3전]

- ---<보 기>-
- ㄱ. DNA 양은 勁이 ⓒ의 2배이다.
- ㄴ. (가)에서 염색 분체의 비분리가 일어났다.
- □이 분화되어 생성된 정자와 정상 난자가 수정하여 태어난 아이는 클라인펠터 증후군을 나타낸다.

5. 2019년 3월 교육청 모의고사 9번

9. 그림은 어떤 동물(2n = 6)의 정자 형성 과정을 나타낸 것이다.
 이 동물의 성염색체는 XY이고, 정자 형성 과정에서 성염색체 비분리가 1회 일어났다. 정자 ⑤~ⓒ 각각의 총 염색체 수는 서로 다르고, ⓒ의 X 염색체 수와 ⓒ의 총 염색체 수를 더한 값은 5이다.


이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이는 고려하지 않는다.)

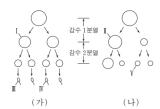
- < 보기 > -

- ㄱ. 성염색체 비분리는 감수 1분열에서 일어났다.
- ㄴ. ①의 총 염색체 수는 2이다.
- C. ©의 Y 염색체 수는 1이다.

6. 2019년 10월 교육청 모의고사 16번

16. 그림은 어떤 동물(2n=6)에서 정자가 형성되는 과정을, 표는 세포 I~Ⅲ의 총염색체 수와 X염색체 수를 비교하여 나타낸 것이다. 감수 1분열과 감수 2분열에서 염색체 비분리가 각각 1회씩 일어났다. 이 동물의 성염색체는 암컷이 XX, 수컷이 XY이며, Ⅲ에 Y염색체가 있다. I은 중기의 세포이다.

총염색체 수	X 염색체 수
∐ > <u> </u> > I	∏ = ∏ > I


이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이는 고려하지 않는다.)

--- < 보기 > -

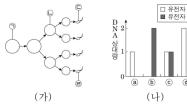
- ㄱ. Ⅰ의 상염색체 수와 Ⅱ의 성염색체 수의 합은 4이다.
- ㄴ. 감수 1분열에서 상염색체 비분리가 일어났다.
- X 염색체 수 는 Ⅱ가 Ⅲ보다 크다.

7. 2018학년도 6월 평가원 모의고사 13번

13. 그림 (r)와 (r)는 각각 어떤 남자와 여자의 생식 세포 형성 과정을, 표는 세포 $@\sim @$ 의 총 염색체 수와 X 염색체 수를 나타낸 것이다. (r)의 감수 1분열에서는 7번 염색체에서 비분리가 1회, 감수 2분열에서는 1개의 성염색체에서 비분리가 1회 일어났다. (r)의 감수 1분열에서는 21번 염색체에서 비분리가 1회, 감수 2분열에서는 1개의 성염색체에서 비분리가 1회 일어났다. 2분열에서는 1개의 성염색체에서 비분리가 1회 일어났다. 20 20 는 10 10 를 순서 없이 나타낸 것이다.

	_			_		
세	포	총 염색	체 수	Х	염색체	수
(a)	22			1	
(9	24			0	
(0	24			1	
(Ð	25			0	
(e)	9)		2	

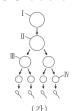
이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이는 고려하지 않으며, Ⅰ과 Ⅱ는 중기의 세포이다.)


- ㄱ. ①=25이다.
- ∟. Ⅲ의 Y 염색체 수는 2이다.
- □. IV에는 7번 염색체가 있다.

6. 돌연변이 - ⑤ 비분리와 세포 분열 <유전자와 DNA 상대량>

[Part 1]

1. 2014년 10월 교육청 모의고사 9번


9. 그림 (가)는 핵형이 정상인 어떤 남자에서 G_1 기의 세포 ①으로부터 정자가 형성되는 과정을, (나)는 세포 ⓐ ~ ⑥에서 21번 염색체에 있는 유전자 E와 e의 DNA 상대량을 나타낸 것이다. ⓐ ~ ⑥는 각각 ① ~ ② 중 하나이다. (가)에서 21번 염색체의 비분리가 1회 일어났으며, E와 e는 서로 대립 유전자이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, ⓒ은 중기의 세포이며, 교차와 제시된 염색체 비분리 이외 의 다른 돌연변이는 고려하지 않는다.)

- ㄱ. (가)에서 상동 염색체의 비분리가 일어났다.
- ㄴ. 염색체 수는 ⑤가 ⓓ보다 많다.
- □. ②과 정상 난자가 수정되어 아이가 태어날 때, 이 아이는 다운 증후군을 나타낸다.

2. 2016학년도 수능 12번

шπ	염색체 수	I	ONA	상대령	ji
세포	검색제 ㅜ	Н	h	Т	t
1	a	2	0	?	0
0	6	2	2	Ъ	c
€	?	1	<u>d</u>	0	1
包	3	0	0	0	1

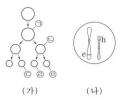
이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 교차와 제시된 비분리 이외의 돌연변이는 고려하지 않으며, H, h, T, t 각각의 1개당 DNA 상대량은 같다.) [3점]

─ 〈보기〉-

- ㄱ. ⓑ +ⓒ보다 ⓐ +ⓓ가 크다.
- ㄴ. চ은 N이다.
- ㄷ. ②은 염색체 X와 Y를 모두 가지고 있다.

3. 2017학년도 6월 평가원 모의고사 12번

세포	SUAL	한 DNA	
세포	40	A	В
I	n+1	?	2
II	2n	1	1
Ш	n	2	a
IV	?	2	Ъ


이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 교차와 제시된 비분리 이외의 돌연변이는 고려하지 않으며, ①과 ⓒ은 중기의 세포이다.)

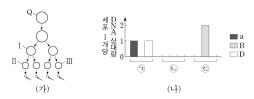
-〈보기〉-

- ㄱ. ⓐ+ⓑ=2이다.
- ㄴ. I 은 চ이다.
- 다. IV에는 2가 염색체가 있다.

4. 2017학년도 수능 8번

 지림 (가)는 어떤 동물(2n=6)
 에서 형질 @의 유전자형이
 BBEeFfhh인 G₁기의 세포로부터 정자가 형성되는 과정을, (나)는
 @의 유전자형이 eh인 세포 @에 들어 있는 모든 염색체를 나타낸 것이다. (가)에서 염색체 비분리가

1회 일어났고, ③과 ⓒ에서 F의 DNA 상대량은 같다.

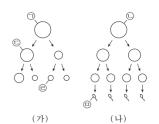

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않으며, ③과 ⑥은 중기의 세포이다.) [3점]

----(보기)-

- ㄱ. 염색체 비분리는 감수 1분열에서 일어났다.
- ㄴ. ⓒ에서 B와 f는 연관되어 있다.
- 교의 염색체 수
 크의 염색 분체 수

5. 2020학년도 9월 평가원 모의고사 15번

15. 사람의 유전 형질 ⓐ는 3쌍의 대립 유전자 A와 a, B와 b, D와 d에 의해 결정되며, ⓐ를 결정하는 유전자는 서로 다른 2개의 상염색체에 있다. 그림 (가)는 유전자형이 AaBbDd인 G₁기의 세포 Q로부터 정자가 형성되는 과정을, (나)는 세포 ⑦~ⓒ의 세포 1개당 a, B, D의 DNA 상대량을 나타낸 것이다. ⑦~ⓒ은 I~Ⅲ을 순서 없이 나타낸 것이다. (가)에서 염색체 비분리는 1회 일어났고, I~Ⅲ 중 1개의 세포만 A를 가지며, I은 중기의 세포이다.



이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려 하지 않으며, A, a, B, b, D, d 각각의 1개당 DNA 상대량은 1이다.)

- ¬. Q에서 A와 b는 연관되어 있다.
- ㄴ. 염색체 비분리는 감수 2분열에서 일어났다.
- □. 세포 1개당 a, b, d의 DNA 상대량을 더한 값은 Ⅱ에서와 Ⅲ에서가 서로 같다.

6. 2016학년도 9월 평가원 모의고사 17번

17. 그림 (가)와 (나)는 각각 핵형이 정상인 어떤 여자와 남자의 생식 세포 형성 과정을, 표는 세포 ⓐ∼⑥가 갖는 대립 유전자 H, h, T, t의 DNA 상대량을 나타낸 것이다. H는 h의 대립 유전자이며, T는 t의 대립 유전자이다. (가)와 (나)에서 염색체 비분리가 각각 1회씩 일어났으며, (가)에서는 21번 염색체에서, (나)에서는 성염색체에서 일어났다. ⓐ∼⑥는 각각 ⑤∼取 중하나이다.

шт	DNA 상대량					
세포	Н	h	T	t		
(a)	2	0	1	0		
Ф	0	2	2	2		
©	2	2	2	2		
(1)	2	0	2	2		
e	1	0	0	0		

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않으며, ⑦~ⓒ은 중기의 세포이다.)

- ㄱ. (나)에서 상동 염색체의 비분리가 일어났다.
- ∟. ©의 상염색체 수와 ⓒ의 총 염색체 수의 합은 45이다.
- ㄷ. 세포 1개당 $\frac{T 의 DNA 상대량}{성염색체 수}$ 은 \bigcirc 이 @의 2 배이다.

7. 2017년 10월 교육청 모의고사 11번

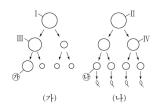
11. 다음은 유전자형이 AaBbDd인 어떤 동물의 감수 분열에 대한 자료이다.

- o A와 a, B와 b, D와 d는 각각 세 형질에 대한 대립 유전 자이며, 이 중 두 형질에 대한 유전자는 연관되어 있다.
- 그림은 세포 I로부터 정자가 형성되는 과정을, 표는 세포 ① ~ ②의 세포 1개당 대립 유전자 A, a, B, b, D, d의 DNA 상대량을 나타낸 것이다.

세포	DNA 상대량					
세포	Α	a	В	b	D	d
9	1	?	(a)	(b)	1	1
Ü.	0	2	2	?	?	0
Œ	1	c	1	1	?	1
2	?	?	(d)	2	2	?

 각수 1분열과 2분열에서 염색체 비분리가 각각 1회씩 일 어났으며, ③∼億은 각각 I ~IV 중 하나이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, A, a, B, b, D, d 각각의 1개당 DNA 상대량은 같고, 제시 된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않는다.)


- < 보기 > -

- ㄱ. ⓒ은 Ⅱ이다.
- ㄴ. ⓐ + ⓑ = ⓒ + ⓓ이다.
- с. I 에서 A와 b가 연관되어 있다.

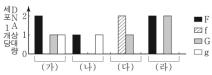
※ 조건 추가: 감수 1분열에서는 7번 염색체의 비분리가, 감수 2분열에서는 8번 염색체의 비분리가 일어났다.

8. 2019학년도 6월 평가원 모의고사 15번

15. 그림 (r)와 (r)는 핵상이 2n인 어떤 동물에서 암컷과 수컷의 생식 세포 형성 과정을, 표는 세포 \bigcirc (문이 갖는 유전자 E, e, F, f, G, g의 DNA 상대량을 나타낸 것이다. E와 e, F와 f, G와 g는 각각 대립 유전자이다. (r)와 (r)의 감수 1분열에서 성염색체 비분리가 각각 1회 일어났다. \bigcirc (문은 r) r0이다.

세포		DNA 상대량					
세포	Е	e	F	f	G	g	
Э	?	0	2	0	2	a	
(L)	2	2	0	4	0	?	
E	Ъ	0	?	2	?	0	
2	4	0	c	2	?	2	

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않으며, $I\sim IV$ 는 중기의 세포이다. E, e, F, f, G, g 각각의 1개당 DNA 상대량은 같다.)


-<보 기>-

- ㄱ. ᠍은 Ⅲ이다.
- (a) + (b) + (c) = 6이다.
- ㄷ. 성염색체 수는 ⑦ 세포와 ① 세포가 같다.

9. 2019년 4월 교육청 모의고사 11번

11. 다음은 어떤 동물 종의 유전 형질 ①에 대한 자료이다.

- ①은 서로 다른 상염색체에 존재하는 2쌍의 대립 유전자 F와 f, G와 g에 의해 결정된다.
- \circ 그림은 이 동물 종의 개체 I 과 II의 세포 (T) \sim (라)가 갖는 F, f, G, g의 DNA 상대량을 나타낸 것이다.

- I 의 세포 P로부터 감수 분열 시 DNA 상대량이 (가), (나), (라)와 같은 세포가, Ⅱ의 세포 Q로부터 감수 분열 시 DNA 상대량이 (나), (다)와 같은 세포가 형성되었다.
- ○P와 Q 중 한 세포에서만 감수 분열 시 염색체 비분리가 1회 일어났다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 교차와 제시된 염색체 비분리 이외의 돌연변이는 고려하지 않으며, F, f, G, g 각각의 1개당 DNA 상대량은 같고, (라)는 중기의 세포이다.) [3점]

→ 보기≻

- ㄱ. Ⅰ의 ③에 대한 유전자형은 FFGg이다.
- ㄴ. (가)와 (라)의 핵상은 같다.
- ㄷ. P의 감수 분열 시 염색체 비분리가 일어났다.

10. 2023년 10월 교육청 모의고사 18번

18 사람의 특정 형질은 1번 염색체에 있는 3쌍의 대립유전자 A와 a, B와 b, D와 d에 의해 결정된다. 그림은 어떤 사람의 G_1 기 세포 I 로부터 생식세포가 형성되는 과정을, 표는 세포 ⑦~⑰에서 A, a, B, b, D의 DNA 상대량을 나타낸 것이다. 이 생식세포 형성 과정에서 염색체 비분리가 1회 일어났다. ⑦~⑰은 $I \sim V$ 를 순서 없이 나타낸 것이고, Π 와 II은 중기 세포이다.

ul v		DN	[A 상대	H량	
세포	A	a	В	b	D
9	2	0	0	2	a
(L)	?	Ъ	1	1	?
Œ	0	2	2	0	?
2	?	?	?	?	4
(II)	?	1	1	?	1

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않으며, A, a, B, b, D, d 각각의 1개당 DNA 상대량은 1이다.)

---- < 보기 > ----

- ㄱ. ⑦은 Ⅲ이다.
- ㄴ. ⓐ + ⓑ = 3이다.
- c. V의 염색체 수는 24이다.

6. 돌연변이 - ⑥ 비분리와 세포 분열 <유전자와 DNA 상대량의 합> [Part 1]

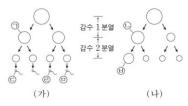
1, 2019학년도 9월 평가원 모의고사 9번

9. 사람의 유전 형질 (가)는 3 쌍의 대립 유전자 H와 h, R와 r, T와 t에 의해 결정되며, (가)를 결정하는 유전자는 서로 다른 3개의 상염색체에 존재한다. 그림은 어떤 사람의 G₇기 세포 I로부터 정자가 형성되는 과정을, 표는 세포 ⑦∼ⓒ에 들어 있는 세포 1개당 대립 유전자 H, R, T의 DNA 상대량을 더한 값을 나타낸 것이다. 이 정자 형성 과정에서 21 번 염색체의 비분리가 1회 일어났고, ⑦∼ⓒ은 I∼IV를 순서 없이 나타낸 것이다.

세포	H, R, T의 DNA 상대량을 더한 값
7	2
L)	3
E	3
2	?

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려 하지 않으며, H, h, R, r, T, t 각각의 1개당 DNA 상대량은 1이다.)

----<보 기>-

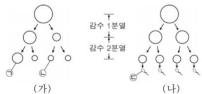

- ㄱ. ②은 Ⅱ이다.
- ㄴ. 염색체 비분리는 감수 1분열에서 일어났다.
- 다. 정자 ⓐ와 정상 난자가 수정되어 태어난 아이는 다운 증후군의 염색체 이상을 보인다.

6. 돌연변이 - ⑦ 비분리와 유전

[Part 1]

1. 2015학년도 수능 18번

18. 정상 부모 사이에서 태어난 철수는 적록 색맹이며, 클라인펠터 증후군이다. 그림 (가)는 철수 아버지의 정자 형성 과정을, (나)는 어머니의 난자 형성 과정을 나타낸 것이다. 정자 ⓒ과 난자 ⑪이 수정되어 철수가 태어났으며, (가)와 (나)에서 비분리는 성염색체 에서만 각각 1회씩 일어났다.



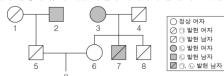
이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 철수의 체세포 1개당 염색체 수는 47개이며, 제시된 비분리 이외의 다른 돌연변이는 고려하지 않는다.) [3점]

- ㄱ. (나)에서 비분리는 감수 2분열에서 일어났다.
- ㄴ. ①과 ⓒ의 염색체 수는 같다.
- 다. ②과 ②은 모두 X 염색체를 가진다.

2. 2015년 10월 교육청 모의고사 5번

5 적록 색맹이 아닌 부모 사이에서 태어난 철수와 영희는 모두 적록 색맹이며, 철수는 클라인펠터 증후군, 영희는 터너 증후군 이다. 그림 (가)와 (나)는 부모의 생식 세포 형성 과정을 나타 낸 것이다. 난자 ①이 수정되어 철수가 태어났으며, 정자 ⓒ이 수정되어 영희가 태어났다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 염색체 비분리는 (가)와 (나)의 성염색체에서만 각각 1회 씩 일어났고, 이외의 다른 돌연변이와 교차는 고려하지 않는다.) [3점]


- < 보기 > -

- ㄱ. (가)에서 염색체 비분리는 감수 1분열에서 일어났다.
- □ ~ ⓒ에서 적록 색맹 유전자를 가진 X 염색체 수의 합
 은 3이다.
- C. ©의 염색체 수는 22개이다.

3. 2016년 4월 교육청 모의고사 15번

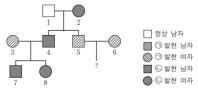
15. 다음은 어떤 집안의 유전 형질 ⊙과 ⓒ에 대한 자료이다.

○ ①은 대립 유전자 A와 A*에 의해, ②은 대립 유전자 B와 B*에 의해 결정되며, 각 대립 유전자 사이의 우열 관계는 분명하다.

 \circ 표는 구성원 $1\sim 4$ 에서 체세포 1개당 A"와 B"의 DNA 상대량을 나타낸 것이다.

구성원	A*의 DNA 상대량	B*의 DNA 상대량
1	2	1
2	0	1
3	0	2
4	1	0

○ 염색체 비분리가 1회 일어난 정자 ⓐ와 정상 난자가 수정되어 체세포 1개당 염색체 수가 47개인 구성원 8이 태어났다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 교차와 제시된 염색체 비분리 이외의 다른 돌연변이는 고려하지 않는다.)[3점]

- ¬. A*는 상염색체에 존재한다.
- ㄴ. ⓐ 형성 과정 중 염색체 비분리는 감수 2분열에서 일어났다.
- ㄷ. 5와 6 사이에서 아이가 태어날 때, 이 아이에게서 \bigcirc 과 \bigcirc 이 모두 나타날 확률은 $\frac{1}{4}$ 이다.

4. 2017학년도 6월 평가원 모의고사 19번

19. 다음은 어떤 집안의 유전 형질 ⊙과 ⓒ에 대한 자료이다.

- ①은 대립 유전자 A와 A*에 의해, ⑥은 대립 유전자 B와
 B*에 의해 결정되며, 각 대립 유전자 사이의 우열 관계는 분명하다.
- ¬과 ♀을 결정하는 유전자는 같은 염색체에 존재한다.

- 3과 4 중 한 사람에게서만 감수 분열 시 염색체 비분리가 1회 일어나 염색체 수가 비정상적인 생식 세포가 형성 되었다. 이 생식 세포가 정상 생식 세포와 수정되어 태어난 사람은 7과 8 중 1명이다.
- 표는 구성원 1, 2, 3, 4, 7, 8에서 체세포 1개당 A*와 B*의 DNA 상대량을 나타낸 것이다.

구성원	<u> </u>	1	2	3	4	7	8
DNA	A*	0	1	?	?	(a)	(b)
상대량	В*	0	?	0	(d)	?	?

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 교차와 제시된 비분리 이외의 돌연변이는 고려하지 않으며, A, A*, B, B* 각각의 1개당 DNA 상대량은 같다.) [3점]

- ㄱ. ⓐ+ⓑ+ⓒ+ⓓ=3이다.
- ㄴ. 4의 감수 2분열 과정에서 염색체 비분리가 일어났다.
- 다. 5와 6 사이에서 아이가 태어날 때, 이 아이에게서 ③과
 ⑤ 중 ⑤만 발현될 확률은 ¹/₂ 이다.

5. 2017학년도 9월 평가원 모의고사 19번

19. 다음은 어떤 집안의 유전 형질 ⊙과 ⓒ에 대한 자료이다.

- ①은 대립 유전자 A와 A*에 의해, ○은 대립 유전자 B와
 B*에 의해 결정된다. A는 A*에 대해, B는 B*에 대해 각각 완전 우성이다.
- ③과 Û을 결정하는 유전자는 모두 X 염색체에 연관되어 있다.
- 부모 모두 ⑦은 발현되지 않았고, 부모 중 한 사람만 ©이 발현되었다.
- 표는 이 부모로부터 태어난 자녀 1~4의 성별과 ¬과 □의 발현 여부를 나타낸 것이다.

자녀	성별	9	6
1	남	×	0
2	남	0	0
3	여	×	×
4	남	×	×

(O: 발현됨, X: 발현되지 않음)

- 부모와 자녀 1~3의 핵형은 모두 정상이다.
- 감수 분열 시 부모 중 한 사람에게서만 염색체 비분리가 1회 일어나 ⑧ 염색체 수가 비정상적인 생식 세포가 형성 되었다. ⑩가 정상 생식 세포와 수정되어 4가 태어났으며, 4는 클라인펠터 증후군을 나타낸다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않는다.) [3점]

- 〈보기〉-

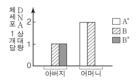
- ㄱ. ₾은 우성 형질이다.
- ∟. 1~4의 어머니는 A와 B*가 연관된 염색체를 가지고 있다.
- C. @는 감수 1분열에서 염색체 비분리가 일어나 형성된 정자이다.

6. 2017년 3월 교육청 모의고사 15번

15. 다음은 영희네 가족의 유전병 →에 대한 자료이다.

- ③은 X 염색체에 있는 대립 유전자 R와 r에 의해 결정되며, R는 r에 대해 완전 우성이다.
- 영희네 가족 구성원은 아버지, 어머니, 오빠, 영희이다.
- 부모에게서 ③이 나타나지 않고, 오빠와 영희에게서 ③이 나타난다.
- 오빠와 영희에게서 염색체 수 이상이 나타나고, 체세포 1개당 X 염색체 수는 오빠가 영희보다 많다.
- 오빠와 영희가 태어날 때 각각 부모 중 한 사람의 감수 분열에서 성염색체 비분리가 1회 일어났다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않는다.) [3점]


- 그. 오빠는 감수 1분열에서 염색체 비분리가 일어나 형성된 난자가 수정되어 태어났다.
- 니. 영희가 태어날 때 아버지의 감수 분열에서 염색체 비분 리가 일어났다.
- ㄷ. 체세포 1개당 r의 수는 어머니가 영희보다 많다.

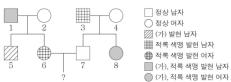
7. 2017년 4월 교육청 모의고사 16번

16. 다음은 5명으로 구성된 철수네 가족의 유전 형질 ③과 ⓒ에 대한 자료이다.

- ①은 대립 유전자 A와 A*에 의해, ○은 대립 유전자 B와 B*에 의해 결정되며, 각 대립 유전자 사이의 우열 관계는 분명하다.
- 표는 철수네 가족 구성원에서 ③과 ⓒ이 발현된 모든 사람을, 그림은 아버지와 어머니의 체세포 1개당 A*, B, B*의 DNA 상대량을 나타낸 것이다.

구분	가족 구성원
① 발현	어머니, 형
① 발현	아버지, 누나, 철수

○감수 분열 시 성염색체 비분리가 1회 일어난 정자 ⓐ와 정상 난자가 수정되어 철수가 태어났다. 철수의 염색체 수는 47개 이다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이는 고려하지 않으며, A. A. B. B. 각각의 1개당 DNA 상대량은 같다.) [3점]

- ¬. A는 A*에 대해 우성이다.
- L. 철수의 형에서 ©의 유전자형은 동형 접합이다.
- 다. ⓐ가 형성될 때 성염색체 비분리는 감수 2분열에서 일어났다.

8. 2019년 3월 교육청 모의고사 18번

18. 다음은 어떤 집안의 유전 형질 (가)와 적록 색맹에 대한 자료이다.

- (가)는 대립 유전자 A와 a에 의해, 적록 색맹은 대립 유전자 B와 b에 의해 결정되며, A는 a에 대해, B는 b에 대해 각각 완전 우성이다.
- (가)와 적록 색맹을 결정하는 유전자는 동일한 염색체에 연관되어 있다.

- 구성원 5는 클라인펠터 증후군을, 구성원 8은 터너 증후 군을 나타낸다. 5와 8은 각각 부모 중 한 사람의 감수 분열에서 성염색체 비분리가 1회 일어나 형성된 생식 세포 가 정상 생식 세포와 수정되어 태어났다.
- 5에서 체세포 1개당 a와 B의 수는 같다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않는다.) [3점]

- < 보기 > -

- ㄱ. (가)는 우성 형질이다.
- ㄴ. 성염색체 비분리는 2와 3의 감수 분열에서 일어났다.
- 다. 6과 7 사이에서 아이가 태어날 때, 이 아이에게서 (가)
 와 적록 색맹이 모두 발현될 확률은 $\frac{1}{2}$ 이다.

9. 2020학년도 6월 평가원 모의고사 10번

10. 다음은 어떤 가족의 유전 형질 (가)에 대한 자료이다.

- (가)를 결정하는 3개의 유전자는 각각 대립 유전자 A와 a,
 B와 b, D와 d를 가진다.
- (가)의 표현형은 유전자형에서 대문자로 표시되는 대립 유전자의 수에 의해서만 결정되며, 이 대립 유전자의 수가 다르면 표현형이 다르다.
- (가)의 유전자형이 AaBbDd인 부모 사이에서 아이가 태어날 때,
 이 아이에게서 나타날 수 있는 (가)의 표현형은 최대 5가지이다.
- 감수 분열 시 염색체 비분리가 1회 일어나 ② 염색체 수가 비정상적인 난자가 형성되었다. ③와 정상 정자가 수정 되어 아이가 태어났고, 이 아이는 자녀1과 2 중 한 명이다.
 이 아이를 제외한 나머지 구성원의 핵형은 모두 정상이다.
- 표는 이 가족 구성원 중 자녀 1과 2의 (가)에 대한 유전자형 에서 대문자로 표시되는 대립 유전자의 수를 나타낸 것이다.

구성원	대문자로 표시되는 대립 유전자의 수
자녀 1	4
자녀 2	7

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려 하지 않는다.)

- □. (가)의 유전은 다인자 유전이다.
- ㄴ. 아버지에서 A, B, D를 모두 갖는 정자가 형성될 수 있다.
- 드. ⑧의 형성 과정에서 염색체 비분리는 감수 2분열에서 일어났다.

10. 2020년 10월 교육청 모의고사 20번

20. 다음은 어떤 가족의 유전 형질 (가)와 (나)에 대한 자료이다.

- (가)는 대립유전자 A와 A*에 의해, (나)는 대립유전자 B 와 B*에 의해 결정되며, 각 대립유전자 사이의 우열 관계 는 분명하다.
- (가)와 (나)의 유전자 중 하나는 상염색체에, 나머지 하나 는 X 염색체에 있다.
- 표는 이 가족 구성원의 (가)와 (나)의 발현 여부와 A, A*,
 B, B*의 유무를 나타낸 것이다.

구성원	형질		대립유전자				
T 8 M	(가)	(나)	A	A*	В	B^*	
아버지	_	+	×	0	0	×	
어머니	+	-	0	?	?	0	
형	+	_	?	0	×	0	
누나	-	+	×	0	0	?	
1	+	+	0	?	?	0	

(+: 발현됨, -: 발현 안 됨, ○: 있음, ×: 없음)

 암수 분열 시 부모 중 한 사람에게서만 염색체 비분리가 1회 일어나 ⓐ 염색체 수가 비정상적인 생식세포가 형성되었다. ⓐ가 정상 생식세포와 수정되어 태어난 ⑤에게서 클라인펠터 증후군이 나타난다. ⑤을 제외한 나머지 구성원의 핵형은 모두 정상이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고 려하지 않는다.)

--- < 보 기 > -

- ㄱ. (가)의 유전자는 X 염색체에 있다.
- 는. (a)는 감수 1분열에서 성염색체 비분리가 일어나 형성된 정자이다.
- ㄷ. \bigcirc 의 동생이 태어날 때, 이 아이에게서 (가)와 (나)가 모 두 발현될 확률은 $\frac{1}{4}$ 이다.

11. 2022년 3월 교육청 모의고사 19번

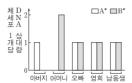
19. 다음은 어떤 가족의 유전 형질 (가)와 (나)에 대한 자료이다.

- (가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B와 b에 의해 결정된다. A는 a에 대해, B는 b에 대해 각각 완 전 우성이다.
- (가)와 (나)의 유전자는 모두 X 염색체에 있다.
- 표는 가족 구성원의 성별, (가)와 (나)의 발현 여부를 나 타낸 것이다.

구분	아버지	어머니	자녀 1	자녀 2	자녀 3
성별	남	여	야	남	남
(가)	?	×	0	0	×
(나)	0	×	0	×	0

(○: 발현됨, ×: 발현 안 됨)

○ 성염색체 비분리가 1회 일어나 형성된 생식세포 ③과 정 상 생식세포가 수정되어 자녀 3이 태어났다.


이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않는다.) [3점]

- ㄱ. 아버지에게서 (가)가 발현되었다.
- ㄴ. (나)는 우성 형질이다.
- □의 형성 과정에서 성염색체 비분리는 감수 1분열에서 일어났다

12. 2017학년도 수능 11번

11. 다음은 영희네 가족의 유전 형질 ⓐ, ⓑ와 적록 색맹에 대한 자료이다

- ⓐ는 대립 유전자 A와 A*에 의해. ⓑ는 대립 유전자 B와 B*에 의해 결정되며, 각 대립 유전자 사이의 우열 관계는 분명하다
- 그림은 영희네 가족 구성원에서 체세포 1개당 A*와 B*의 DNA 상대량을, 표는 ⓐ, ⓑ, 적록 색맹의 발현 여부를 나타낸 것이다.

구성원	형질@	형질(1)	적록 색맹			
아버지	0	X	×			
어머니	X	0	0			
오빠	0	0	?			
영희	0	X	?			
남동생	0	×	?			
(O: 발현됨, X: 발현되지 않음)						

○ 감수 분열 시 염색체 비분리가 1회 일어나 형성된 정자와 정상 난자가 수정되어 영희의 남동생이 태어났다. 남동생의 염색체 수는 47개이다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않으며, A, A*, B, B* 각각의 1개당 DNA 상대량은 같다.)

- ㄱ. A*는 A에 대해 우성이다.
- ㄴ. 영희의 남동생은 적록 색맹이다.
- 다. ⓐ와 ⓑ 중 ⓑ만 발현된 적록 색맹 남자와 영희 사이에서 아이가 태어날 때, 이 아이에게서 ⓐ, ⓑ, 적록 색맹이 모두 발현될 확률은 $\frac{1}{4}$ 이다.

13. 2018학년도 9월 평가원 모의고사 15번

15. 다음은 어떤 가족의 유전 형질 ⊙, ⊙, ⓒ에 대한 자료이다.

- ①은 대립 유전자 A, B, C에 의해, ②은 대립 유전자 D, E, F에 의해, ⓒ은 대립 유전자 G와 g에 의해 결정된다.
- ¬~□을 결정하는 유전자는 모두 21번 염색체에 있다.
- 감수 분열 시 부모 중 한 사람에게서만 염색체 비분리가 1회 일어나 ⑧염색체 수가 비정상적인 생식 세포가 형성 되었다. ⑧가 정상 생식 세포와 수정되어 아이가 태어났다. 이 아이는 자녀 2와 자녀 3 중 하나이며, 다운 증후군을 나타낸다. 이 아이를 제외한 나머지 구성원의 핵형은 모두 정상이다.
- 표는 이 가족 구성원에서 ⑦~ⓒ을 결정하는 대립 유전자의 유무를 나타낸 것이다.

구성원				대립 -	유전자			
干容型	A	В	С	D	E	F	G	g
부	0	×	0	0	×	0	0	0
모	0	0	×	×	0	0	×	0
자녀 1	×	0	0	0	×	0	0	0
자녀 2	0	0	×	×	0	0	×	0
자녀 3	0	×	0	0	0	×	0	0
	0	×	0	0	0		0	0

(○: 있음, X: 없음)

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않는다.)

----(보기)-

- ㄱ. 자녀 1은 C, D, G가 연관된 염색체를 갖는다.
- ㄴ. 다운 증후군을 나타내는 구성원은 자녀 2이다.
- C. ⑧는 감수 1분열에서 염색체 비분리가 일어나 형성된 정자이다.

14. 2018학년도 수능 19번

- 19. 다음은 어떤 가족의 유전 형질 ¬~□에 대한 자료이다.
 - ①은 대립 유전자 H와 H*에 의해, ⓒ은 대립 유전자 R와 R*에 의해, ⓒ은 대립 유전자 T와 T*에 의해 결정된다. H는 H*에 대해, R는 R*에 대해, T는 T*에 대해 각각 완전 우성이다.
 - \circ \lnot ~ \Box 을 결정하는 유전자는 모두 X 염색체에 있다.
 - 감수 분열 시 부모 중 한 사람에게서만 염색체 비분리가 1회 일어나 ⓐ 염색체 수가 비정상적인 생식 세포가 형성되었다.
 ⑥가 정상 생식 세포와 수정되어 아이가 태어났다. 이 아이는 자녀 3과 자녀 4 중 하나이며, 클라인펠터 증후군을 나타낸다. 이 아이를 제외한 나머지 구성원의 핵형은 모두 정상이다.
 - 표는 구성원의 성별과 ⑦~ⓒ의 발현 여부를 나타낸 것이다.

구성원	성별	9	(L)	©
부	남	0	?	?
모	여	?	×	?
자녀 1	남	×	0	0
자녀 2	여	×	×	×
자녀 3	남	×	×	0
자녀 4	남	0	×	0

(O: 발현됨, X: 발현되지 않음)

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않는다.) [3점]

-⟨보기⟩-

- ㄱ. ⓒ과 ⓒ은 모두 열성 형질이다.
- ㄴ. 클라인펠터 증후군을 나타내는 구성원은 자녀 4이다.
- $_{\text{C}}$. (a)는 감수 (a)분열에서 염색체 비분리가 일어나 형성된 정자이다.

15. 2018년 4월 교육청 모의고사 17번

17. 다음은 철수네 가족의 유전 형질 (가)와 (나)에 대한 자료이다.

- ○(가)는 대립 유전자 A와 A*에 의해, (나)는 대립 유전자 B와 B*에 의해 결정되며, 각 대립 유전자 사이의 우열 관계는 분명 하다
- ○표는 철수네 가족 구성원에서 (가)와 (나)의 발현 여부와 체세포 1개당 A*와 B*의 DNA 상대량을 나타낸 것이다. 구성원 ① ~ ⓒ은 아버지, 어머니, 누나를 순서 없이 나타낸 것이다.

구성원	유전	형질	DNA 상대량				
TSE	(가)	(나)	A*	B*			
9	×	0	1	1			
Ū.	0	×	2	0			
Œ	0	0	1	1			
형	0	×	1	0			
철수	×	0	1	2			

(○: 발현됨, ×: 발현 안 됨)

○감수 분열 시 염색체 비분리가 1회 일어난 정자 ⓐ와 정상 난자가 수정되어 철수가 태어났다. 철수의 체세포 1개당 염색체 수는 47개이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 교차와 제시된 염색체 비분리 이외의 돌연변이는 고려하지 않으며, A, A*, B, B* 각각의 1개당 DNA 상대량은 같다.) [3점]

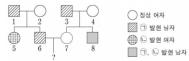
─ 보기≻

- ㄱ. (나)의 유전자는 상염색체에 있다.
- ㄴ. 누나는 어머니에게서 A*와 B를 물려받았다.
- ㄷ. ②가 형성될 때 염색체 비분리는 감수 2분열에서 일어났다.

16. 2018년 7월 교육청 모의고사 20번

- 20. 다음은 어떤 가족의 유전 형질 ⊙과 적록 색맹에 대한 자료이다.
 - ①을 결정하는 3개의 유전자는 각각 대립 유전자 A와 a, B와 b, D와 d를 가지며, 이 중 2개의 유전자는 X 염색체에, 다른 1개의 유전자는 상염색체에 존재한다.
 - ⊙의 표현형은 유전자형에서 대문자로 표시되는 대립 유전자의 수에 의해서만 결정되며, 이 대립 유전자의 수가 다르면 ⊙의 표현형이 다르다.
 - 표는 가족 구성원의 적록 색맹 여부와 ③의 유전자형에서 대문자로 표시되는 대립 유전자의 수를 나타낸 것이다.

구성원	아버지	어머니	자녀 1	자녀 2	자녀 3
성별	남	여	남	?	여
적록 색맹	색맹	정상	색맹	정상	?
③의 유전자형에서 대문자로	3	2	0	2	7
표시되는 대립 유전자의 수	٥		0		'


 자녀 2는 난자 ①와 정상 정자가, 자녀 3은 난자 ①와 정상 정자가 수정되어 태어났다. ②와 ①는 각각 감수 분열 시 성염색체 비분리가 1회씩 일어나 염색체 수에 이상이 생긴 난자이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단. 제시된 비분리 이외의 돌연변이와 교차는 고려하지 않는다.) [3점]

- ㄱ. 자녀 2는 클라인펠터 증후군이다.
- ㄴ. ⓑ가 형성될 때 감수 2분열에서 염색체 비분리가 일어났다.
- C. 자녀 3의 동생이 태어날 때, 이 아이의 ③과 적록 색맹에 대한 표현형이 아버지와 모두 같을 확률은 $\frac{1}{9}$ 이다.

17. 2019학년도 수능 17번

- 17. 다음은 어떤 집안의 유전 형질 ③과 ⓒ에 대한 자료이다.
 - ③은 대립 유전자 A와 A*에 의해, ⑤은 대립 유전자 B와 B*에 의해 결정된다. A는 A*에 대해, B는 B*에 대해 각각 완전 우성이다.
 - □의 유전자와 ⓒ의 유전자는 연관되어 있다.
 - 가계도는 구성원 1~8에게서 ③과 ⑥의 발현 여부를 나타낸 것이다.

- 1~8의 핵형은 모두 정상이다.
- 5와 8 중 한 명은 정상 난자와 정상 정자가 수정되어 태어났다. 나머지 한 명은 염색체 수가 비정상적인 난자와 염색체 수가 비정상적인 정자가 수정되어 태어났으며, ⓐ 이 난자와 정자의 형성 과정에서 각각 염색체 비분리가 1회 일어났다.
- 1, 2, 6 각각의 체세포 1개당 A*의 DNA 상대량을 더한 값 3, 4, 7 각각의 체세포 1개당 A*의 DNA 상대량을 더한 값

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려 하지 않으며, A와 A* 각각의 1개당 DNA 상대량은 1이다.) [3점]

---<보 기>-

- □. □은 우성 형질이다.
- 니. @의 형성 과정에서 염색체 비분리는 감수 2분열에서 일어났다.

18. 2020학년도 수능 19번

- 19. 다음은 어떤 가족의 유전 형질 ⊙에 대한 자료이다.
 - ①을 결정하는 데 관여하는 3개의 유전자는 모두 상염색체에 있으며, 3개의 유전자는 각각 대립 유전자 A와 a, B와 b, D와 d를 갖는다.
 - ①의 표현형은 유전자형에서 대문자로 표시되는 대립 유전자의 수에 의해서만 결정되며, 이 대립 유전자의 수가 다르면 표현형이 다르다.
 - 표 (가)는 이 가족 구성원의 ③에 대한 유전자형에서 대문자로 표시되는 대립 유전자의 수를, (나)는 아버지로부터 형성된 정자 I~Ⅲ이 갖는 A, a, B, D의 DNA 상대량을 나타낸 것이다. I~Ⅲ 중 1개는 세포 P의 감수 1분열에서 염색체 비분리가 1회, 나머지 2개는 세포 Q의 감수 2분열에서 염색체 비분리가 1회 일어나 형성된 정자이다. P와 Q는 모두 G₁기 세포이다.

구성원	대문자로 표시되는 대립 유전자의 수				
아버지	3				
어머니	3				
자녀 1	8				
(3)					

정자		DNA	상대량			
34	A	a	В	D		
I	0	?	1	0		
П	1	1	1	1		
Ш	2	?	?	?		
(나)						

 I~Ⅲ 중 1개의 정자와 정상 난자가 수정되어 자녀 1이 태어났다. 자녀 1을 제외한 나머지 가족 구성원의 핵형은 모두 정상이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려 하지 않으며, A, a, B, b, D, d 각각의 1개당 DNA 상대량은 1이다.)

- ㄱ. Ⅰ은 감수 2분열에서 염색체 비분리가 일어나 형성된 정자이다.
- ㄴ. 자녀 1의 체세포 1개당 <u>B의 DNA 상대량</u>=1이다.
- □. 자녀 1의 동생이 태어날 때, 이 아이에게서 나타날 수 있는□의 표현형은 최대 5가지이다.
- ※ 조건 추가: □을 결정하는 데 관여하는 3개의 유전자 는 서로 다른 2개의 상염색체에 있다.

19. 2020년 7월 교육청 모의고사 20번

- 20. 다음은 어떤 가족의 유전 형질 (가)와 (나)에 대한 자료이다.
 - (가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B 와 b에 의해 결정된다. A는 a에 대해, B는 b에 대해 각각 완전 우성이다.
 - (가)를 결정하는 유전자와 (나)를 결정하는 유전자 중 하나는 X 염색체에 존재한다.
 - 표는 이 가족 구성원의 성별, 체세포 1개에 들어 있는 대립유전자 A와 b의 DNA 상대량, 유전 형질 (가)와 (나)의 발현 여부를 나타낸 것이다. ①~ □은 아버지, 어머니, 자녀 1, 자녀 2, 자녀 3을 순서 없이 나타낸 것이다.

	.22	DNA 상대량		유전 형질	
구성원	성별	A	b	(가)	(나)
9	남	2	1	×	0
(L)	여	1	2	×	×
Œ	남	1	0	×	0
2	여	2	1	×	0
(II)	남	0	1	0	X

(○: 발현됨, ×: 발현 안 됨)

감수 분열 시 부모 중 한 사람에게서만 염색체 비분리가 1회일어나 ③ 염색체 수가 비정상적인 생식 세포가 형성되었다.
 ③가 정상 생식 세포와 수정되어 자녀 3이 태어났다. 자녀 3을 제외한 나머지 구성원의 핵형은 모두 정상이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않으며, A, a, B, b 각각의 1개당 DNA 상대량은 1이다.) [3점]

-<보 기>-

- ㄱ. 아버지와 어머니는 (가)에 대한 유전자형이 같다.
- ㄴ. 자녀 3은 터너 증후군을 나타낸다.
- ㄷ. ⓐ가 형성될 때 감수 1분열에서 염색체 비분리가 일어났다.

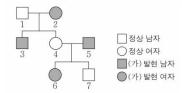
20. 2021학년도 9월 평가원 모의고사 17번

- 17. 다음은 어떤 가족의 유전 형질 (가)~(다)에 대한 자료이다.
 - (가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B와 b에 의해, (다)는 대립유전자 D와 d에 의해 결정된다.
 - (가)~(다)의 유전자 중 2개는 서로 다른 상염색체에, 나머지 1개는 X염색체에 있다.
 - 표는 아버지의 정자 I과 Ⅱ, 어머니의 난자 Ⅲ과 Ⅳ, 딸의 체세포 V가 갖는 A, a, B, b, D, d의 DNA 상대량을 나타낸 것이다.

구분	세포	DNA 상대량						
TE	세포	A	a	В	b	D	d	
아버지의 정자	I	1	0	?	0	0	?	
정자	П	0	1	0	0	?	1	
어머니의	Ш	?	1	0	?	0	0	
난자	IV	0	?	1	?	0	?	
딸의 체세포	V	1	?	?	(L)	?	0	

- Ⅰ과 Ⅱ 중 하나는 염색체 비분리가 1회 일어나 형성된
 ⑥ 염색체 수가 비정상적인 정자이고, 나머지 하나는 정상 정자이다. Ⅲ과 Ⅳ 중 하나는 염색체 비분리가 1회 일어나 형성된 ⑥ 염색체 수가 비정상적인 난자이고, 나머지 하나는 정상 난자이다.
- V는 ⓐ와 ⓑ가 수정되어 태어난 딸의 체세포이며, 이 가족 구성원의 핵형은 모두 정상이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이는 고려하지 않으며, A, a, B, b, D, d 각각의 1개당 DNA 상대량은 1이다.) [3점]


----<보 기>-

- ㄱ. (나)의 유전자는 X 염색체에 있다.
- ㄴ. ①+ⓒ=2이다.
- \Box . <mark>아버지의 체세포 1개당 B의 DNA 상대량 = $\frac{1}{2}$ 이다. 어머니의 체세포 1개당 D의 DNA 상대량 = $\frac{1}{2}$ 이다.</mark>

21. 2021년 4월 교육청 모의고사 19번

19. 다음은 어떤 집안의 유전 형질 (가)와 (나)에 대한 자료이다.

- (가)는 21번 염색체에 있는 대립유전자 A와 a에 의해 결정되며, A는 a에 대해 완전 우성이다.
- \circ (나)는 7번 염색체에 있는 1쌍의 대립유전자에 의해 결정되며, 대립유전자에는 E, F, G가 있다. E는 F, G에 대해, F는 G에 대해 각각 완전 우성이다.
- 가계도는 구성원 1 ~ 7에게서 (가)의 발현 여부를 나타낸 것이다.

- 1, 2, 4, 5, 6, 7의 (나)의 유전자형은 모두 다르다.
- 1, 7의 (나)의 표현형은 다르고, 2, 4, 6의 (나)의 표현형은 같다.
- $\circ rac{1,\,7$ 각각의 체세포 1개당 a의 DNA 상대량을 더한 값 = 1이다.
- 7은 염색체 수가 비정상적인 난자 ⑤과 염색체 수가 비정상적인 정자 ⓒ이 수정되어 태어났으며, ⑤과 ⓒ의 형성 과정에서 각각 염색체 비분리가 1회 일어났다. 1 ~ 7의 핵형은 모두 정상이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이는 고려하지 않으며, A, a, E, F, G 각각의 1개당 DNA 상대량은 1이다.) [3점]

< 보기 >

- ㄱ. (가)는 열성 형질이다.
- ㄴ. 5의 (나)의 유전자형은 동형 접합성이다.
- □. □의 형성 과정에서 염색체 비분리는 감수 2분열에서 일어났다.

22. 2022학년도 9월 평가원 모의고사 19번

19. 다음은 어떤 가족의 유전 형질 (가)~(다)에 대한 자료이다.

- (가)는 대립유전자 H와 h에 의해, (나)는 대립유전자 R와 r에 의해, (다)는 대립유전자 T와 t에 의해 결정된다. H는 h에 대해, R는 r에 대해, T는 t에 대해 각각 완전 우성이다.
- (가)~(다)의 유전자는 모두 X 염색체에 있다.
- 표는 어머니를 제외한 나머지 가족 구성원의 성별과 (가)~(다)의 발현 여부를 나타낸 것이다. 자녀 3과 4의 성별은 서로 다르다.

구성원	성별	(가)	(나)	(다)
아버지	남	0	0	?
자녀 1	여	×	0	0
자녀 2	남	×	×	×
자녀 3	?	0	×	0
자녀 4	?	×	×	0

(O: 발현됨, X: 발현 안 됨)

- 이 가족 구성원의 핵형은 모두 정상이다.
- 여 염색체 수가 22인 생식세포 □과 염색체 수가 24인 생식세포
 □이 수정되어 ⓐ가 태어났으며, ⑥는 자녀 3과 4 중 하나이다.
 □과 □의 형성 과정에서 각각 성염색체 비분리가 1회 일어났다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려 하지 않는다.)

-<보 기>-

- ㄱ. ⓐ는 자녀 4이다.
- ㄷ. (나)와 (다)는 모두 우성 형질이다.

23. 2022년 4월 교육청 모의고사 19번

19. 다음은 어떤 가족의 유전 형질 (가)에 대한 자료이다.

- ○(가)는 상염색체에 있는 한 쌍의 대립유전자에 의해 결정되며, 대립유전자에는 D, E, F가 있다.
- D는 E, F에 대해, E는 F에 대해 각각 완전 우성이다.
- ○표는 이 가족 구성원의 (가)의 3가지 표현형 @ ~ ⓒ와 체세포 1개당 ⑦ ~ ⓒ의 DNA 상대량을 나타낸 것이다. ⑦, ⓒ은 D, E, F를 순서 없이 나타낸 것이다.

구성-	원	아버지	어머니	자녀 1	자녀 2	자녀 3
표현	형	a	b	a	b	c
DNA	7	1	1	0	2	2
	(L)	1	0	?	0	?
상대량	(E)	0	?	1	?	0

○정상 난자와 생식세포 형성 과정에서 염색체 비분리가 1회 일어나 형성된 정자 P가 수정되어 자녀 ②가 태어났다. ②는 자녀 1~3 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않으며, D, E, F 각각의 1개당 DNA 상대량은 1이다.) [3점]

< 보기≻

- ㄱ. ⓒ은 D이다.
- ㄴ. 자녀 2에서 체세포 1개당 ⓒ의 DNA 상대량은 0이다.
- ㄷ. P가 형성될 때 염색체 비분리는 감수 1분열에서 일어났다.

24. 2022년 10월 교육청 모의고사 18번

18. 다음은 어떤 가족의 ABO식 혈액형과 적록 색맹에 대한 자료

○ 표는 구성원의 성별과 각각 의 혈청을 자녀1의 적혈구와 혼합했을 때 응집 여부를 나 타낸 것이다. @와 ⓑ는 각각 '응집됨'과 '응집 안 됨'중 하나이다.

각	구성원	성별	응집 여부	
라	아버지	남	a	
7	어머니	여	a	
각	자녀 1	남	응집 안 됨	
중	자녀 2	여	Ъ	
	자녀 3	여	Ъ	

- 아버지, 어머니, 자녀 2, 자녀 3의 ABO식 혈액형은 서로 다르고, 자녀 1의 ABO식 혈액형은 A형이다.
- 구성원의 핵형은 모두 정상이다.
- 구성원 중 자녀 2만 적록 색맹이 나타난다.
- 자녀 2는 정자 Ⅰ과 난자 Ⅱ가 수정되어 태어났고, 자녀 3
 은 정자 Ⅲ과 난자 Ⅳ가 수정되어 태어났다. Ⅰ~Ⅳ가 형성될 때 각각 염색체 비분리가 1회 일어났다.
- 세포 1개당 염색체 수는 Ⅰ과 Ⅲ이 같다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, ABO식 혈액형 이외의 혈액형은 고려하지 않으며, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점]

- < 보기 > -

- ㄱ. 세포 1개당 X 염색체 수는 Ⅲ이 Ⅰ보다 크다.
- ㄴ. 아버지의 ABO식 혈액형은 A형이다.
- □. IV가 형성될 때 염색체 비분리는 감수 2분열에서 일어났다.

25. 2023학년도 수능 17번

- 17. 다음은 어떤 가족의 유전 형질 (가)에 대한 자료이다.
 - (가)는 서로 다른 상염색체에 있는 2쌍의 대립유전자 H와 h, T와 t에 의해 결정된다. (가)의 표현형은 유전자형에서 대문자로 표시되는 대립유전자의 수에 의해서만 결정되며, 이 대립유전자의 수가 다르면 표현형이 다르다.
 - 표는 이 가족 구성원의 채세포에서 대립유전자 ⓐ~⑥의 유무와 (가)의 유전자형에서 대문자로 표시되는 대립유전자의 수를 나타낸 것이다. ⓐ~⑥는 H, h, T, t를 순서 없이 나타낸 것이고, ①~⑥은 0, 1, 2, 3, 4를 순서 없이 나타낸 것이다.

구성원		대립위	대문자로 표시되는		
十つ世	a	(b)	c	d	대립유전자의 수
아버지	0	0	×	0	9
어머니	0	0	0	0	<u>C</u>
자녀 1	?	×	×	0	Œ
자녀 2	0	0	?	×	2
자녀 3	0	?	0	×	Ш

(○: 있음, ×: 없음)

- 아버지의 정자 형성 과정에서 염색체 비분리가 1회 일어나 염색체 수가 비정상적인 정자 P가 형성되었다. P와 정상 난자가 수정되어 자녀 3이 태어났다.
- 자녀 3을 제외한 이 가족 구성원의 핵형은 모두 정상이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려 하지 않는다.) [3점]

<보 기>·

- ㄱ. 아버지는 t를 갖는다.
- L. @는 ⓒ와 대립유전자이다.
- ㄷ. 염색체 비분리는 감수 1분열에서 일어났다.

26. 2023년 4월 교육청 모의고사 17번

17. 다음은 어떤 가족의 유전 형질 (가)~(다)에 대한 자료이다.

- (가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B와 b에 의해, (다)는 대립유전자 D와 d에 의해 결정된다.
- \circ (가) \sim (다)의 유전자 중 2개는 7번 염색체에, 나머지 1개는 X 염색체에 있다.
- ○표는 이 가족 구성원 ⑦ ~ ⑩의 성별, 체세포 1개에 들어 있는 A, b, D의 DNA 상대량을 나타낸 것이다. ⑦ ~ ⑩은 아버지, 어머니, 자녀 1, 자녀 2, 자녀 3을 순서 없이 나타낸 것이다.

구성원	성별	DN	IA 상대]량
丁% 语	787필	A	b	D
1	여	1	1	1
Ū.	여	2	2	0
Ē	남	1	0	2
2	남	2	0	2
(II)	남	2	1	1

- ① ~ ①의 핵형은 모두 정상이다. 자녀 1과 2는 각각 정상 정자와 정상 난자가 수정되어 태어났다.
- 자녀 3은 염색체 수가 비정상적인 정자 ⓐ와 염색체 수가 비정상적인 난자 ⑤가 수정되어 태어났으며, ⓐ와 ⑥의 형성 과정에서 각각 염색체 비분리가 1회 일어났다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않으며, A, a, B, b, D, d 각각의 1개당 DNA 상대량은 1이다.) [3점]

→ ㅂ 기 →

- 기. (나)의 유전자는 X 염색체에 있다.
- ㄴ. 어머니에게서 A, b, d를 모두 갖는 난자가 형성될 수 있다.
- ㄷ. @의 형성 과정에서 염색체 비분리는 감수 1분열에서 일어났다.

27. 2023년 7월 교육청 모의고사 20번

- **20.** 다음은 어떤 가족의 유전 형질 (γ) ~(다)에 대한 자료이다.
 - (가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B와
 b에 의해, (다)는 대립유전자 D와 d에 의해 결정된다.
 - 그림은 아버지와 어머니의 체세포에 들어있는 일부 염색체와 유전자를 나타낸 것이다. ②→⑩는 각각 ②'~⑫'
 의 상동 염색체이다.

 표는 이 가족 구성원의 세포 I ~IV에서 염색체 ⑦~⑥의 유무와 A, b, D의 DNA 상대량을 더한 값(A+b+D)을 나타낸 것이다. ①~⑥은 ⑦~⑪를 순서 없이 나타낸 것이다.

구성원	세포		염색	A+b+D		
干容担	게포	1	©	E	2	A+0+D
아버지	I	0	×	×	×	0
어머니	II	×	0	×	0	3
자녀 1	Ш	0	×	0	0	3
자녀 2	IV	0	×	×	0	3

(○: 있음, ×: 없음)

- 감수 분열 시 부모 중 한 사람에게서만 염색체 비분리가 1회 일어나 염색체 수가 비정상적인 생식세포 @가 형성되었다.
 ⑧와 정상 생식세포가 수정되어 자녀 2가 태어났다.
- ㅇ 자녀 2를 제외한 이 가족 구성원의 핵형은 모두 정상이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으며, A. a. B. b. D. d 각각의 1개당 DNA 상대량은 1이다.) [3점]

- ㄱ. 않은 ඓ이다.
- ㄴ. 어머니의 (가)∼(다)에 대한 유전자형은 AABBDd이다.
- C. ③는 감수 2분열에서 염색체 비분리가 일어나 형성된 난자 이다

28. 2024학년도 9월 평가원 모의고사 17번

- 17. 다음은 어떤 가족의 유전 형질 (가)에 대한 자료이다.
 - (가)는 21번 염색체에 있는 2 쌍의 대립유전자 H와 h, T와 t에
 의해 결정된다. (가)의 표현형은 유전자형에서 대문자로 표시되는 대립유전자의 수에 의해서만 결정되며, 이 대립 유전자의 수가 다르면 표현형이 다르다.
 - 어머니의 난자 형성 과정에서 21번 염색체 비분리가 1회 일어나 염색체 수가 비정상적인 난자 Q가 형성되었다. Q와 아버지의 정상 정자가 수정되어 @가 태어났으며, 부모의 핵형은 모두 정상이다.
 - 어머니의 (가)의 유전자형은 HHTt이고, ②의 (가)의 유전자형에서 대문자로 표시되는 대립유전자의 수는 4이다.
 - ②의 동생이 태어날 때, 이 아이에게서 나타날 수 있는 (가)의 표현형은 최대 2가지이고, ③이 아이가 가질 수 있는 (가)의 유전자형은 최대 4가지이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려 하지 않는다.) [3점]

---<보 기>--

- 그. 아버지의 (가)의 유전자형에서 대문자로 표시되는 대립 유전자의 수는 2이다.
- ㄴ. ① 중에는 HhTt가 있다.
- ㄷ. 염색체 비분리는 감수 1분열에서 일어났다.

29. 2024학년도 수능 17번

- 17. 다음은 어떤 가족의 유전 형질 (가)~(다)에 대한 자료이다.
 - (가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B와 b에 의해, (다)는 대립유전자 D와 d에 의해 결정된다. A는 a에 대해, B는 b에 대해, D는 d에 대해 각각 완전 우성이다.
 - (가)와 (나)는 모두 우성 형질이고, (다)는 열성 형질이다. (가)의 유전자는 상염색체에 있고, (나)와 (다)의 유전자는 모두 X 염색체에 있다.
 - 표는 이 가족 구성원의 성별과 ⑦~ⓒ의 발현 여부를 나타낸 것이다. ⑦~ⓒ은 각각 (가)~(다) 중 하나이다.

구성원	성별	9	L)	E
아버지	남	0	×	×
어머니	여	×	0	(a)
자녀 1	남	×	0	0
자녀 2	0=	0	0	×
자녀 3	남	0	×	0
자녀 4	남	×	×	×

(○: 발현됨, ×: 발현 안 됨)

- 부모 중 한 명의 생식세포 형성 과정에서 성염색체 비분리가 1회 일어나 염색체 수가 비정상적인 생식세포 G가 형성되었다.
 G가 정상 생식세포와 수정되어 자녀 4가 태어났으며, 자녀 4는 클라인펠터 증후군의 염색체 이상을 보인다.
- 자녀 4를 제외한 이 가족 구성원의 핵형은 모두 정상이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 염색체 비분리 이외의 돌연변이와 교차는 고려 하지 않는다.)

-<보 기>-

- ㄱ. @는 '○'이다.
- L. 자녀 2는 A, B, D를 모두 갖는다.
- ㄷ. G는 아버지에게서 형성되었다.

6. 돌연변이 - ⑧ 구초 이상과 세포 분열 ~ ⑨ 구초 이상과 유전 [Part 1]

1. 2016년 7월 교육청 모의고사 15번

- 15. 다음은 철수 가족의 유전병 (가)에 대한 자료이다.
 - 어머니와 아버지는 각각 정상 대립 유전자 H와 유전병(가) 대립 유전자 H*중 한 가지만 가지고 있고, H와 H*의 우 열 관계는 분명하다.
 - 대립 유전자 H와 H*의 DNA 상대량은 서로 같다.
 - 철수가 태어날 때 부모 중 한 사람의 생식 세포 형성 과정에서만 염색체 비분리가 일어났고, 누나는 결실이 일어난 X 염색체를 1개 가지고 있다.
 - 표는 철수와 철수의 누나, 형, 여동생의 체세포에 들어 있는 X 염색체 수와 유전병 (가)의 유무를 나타낸 것이다.

구분	X 염색체 수	유전병 (가) 유무
철수	2	없음
누나	2	없음
형	1	없음
여동생	2	있음

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 다른 돌연변이는 고려하지 않는다.) [3점]

一 <보 기> **一**

- ㄱ. 어머니는 유전병 (가)를 가지고 있다.
- ㄴ. 체세포 1개 당 H의 DNA 상대량은 철수가 누나의 2배이다.
- 다. 감수 2분열에서 비분리가 일어나 형성된 정자가 수정되어 철수가 태어났다.

2. 2023년 3월 교육청 모의고사 19번

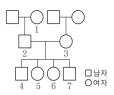
19. 다음은 사람의 유전 형질 (가)에 대한 자료이다.

- 서로 다른 3개의 상염색체에 있는 3쌍의 대립유전자 A와 a, B와 b, D와 d에 의해 결정된다.
- 표는 사람 P의 세포 I~Ⅲ 각각에 들어있는 A, a, B, b,
 D, d의 DNA 상대량을 나타낸 것이다. ③과 ⑥은 1과 2를 순서 없이 나타낸 것이다.

세포 DNA 상대량							
	계포	A	a	В	b	D	d
	I	7	1	0	2	?	7
	II	1	0	?	©.	0	0
Г	III	?	(1)	0	?	0	(L)

 I~Ⅲ 중 2개에는 돌연변이가 일어난 염색체가 없고, 나 머지에는 중복이 일어나 대립유전자 @의 DNA 상대량이 증가한 염색체가 있다. @는 A와 b 중 하나이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으 며, A, a, B, b, D, d 각각의 1개당 DNA 상대량은 1이다.) [3점]


- < 보기 > -

- ㄱ. ⑦은 2이다.
- ㄴ. @는 b이다.
- с. Р에서 (가)의 유전자형은 AaBbDd이다.

3. 2019년 7월 교육청 모의고사 20번

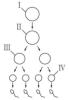
20. 다음은 사람의 유전 형질 (가) ~ (라)에 대한 자료이다.

- (가)는 대립 유전자 A와 a에 의해, (나)는 대립 유전자 B와 b에 의해, (다)는 대립 유전자 D와 d에 의해, (라)는 대립 유전자 E와 e에 의해 결정된다. A, B, D, E는 a, b, d, e에 대해 각각 완전 우성이다.
- (가) ~ (라)를 결정하는 유전자 중 2개는 상염색체에 연관되어 있고, 나머지 2개는 성염색체에 연관되어 있다.
- \circ 그림은 어떤 집안의 가계도를, 표는 가계도 구성원 $1\sim 7$ 에서 $(\Upsilon)\sim (\Upsilon)$ 의 발현 여부를 나타낸 것이다.

구성원	(가)	(나)	(다)	(라)
1	×	×	0	0
2	0	0	×	×
3	0	×	0	×
4	0	×	×	0
5	×	0	0	×
6	×	×	×	0
7	0	×	0	×

(○: 발현됨, ×: 발현 안 됨)

○ 6은 생식 세포 ③와 정상 생식 세포가, 7은 생식 세포 ⑤와 정상 생식 세포가 수정되어 태어났다. ④는 감수 분열 시 염색체에 결실이 1회 일어난 생식 세포이며, 염색체 수는 정상이다. ⑥는 감수 분열 시 염색체 비분리가 1회 일어나 염색체 수에 이상이 생긴 생식 세포이다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않는다.) [3점]

-<보 기>-

- □. 3은 A와 E가 연관된 염색체를 갖는다.
- ㄴ. ②는 결실이 일어난 상염색체를 갖는다.
- с. ⓑ는 감수 1분열에서 비분리가 일어나 형성된 난자이다.

4. 2020년 4월 교육청 모의고사 17번

17. 다음은 사람 P의 정자 형성 과정에 대한 자료이다.

세포	DNA 상대량						
세포	Α	a	В	b	D	d	
9	0	?	a	0	0	0	
Ĺ.	b	2	0	1	?	1	
Œ	?	1	2	(c)	?	1	
(2)	0	?	4	?	2	(d)	

- ∘ I 은 G₁기 세포이며, I 에는 중복이 일어난 염색체가 1개만 존재한다. I 이 Ⅱ가 되는 과정에서 DNA는 정상적으로 복제 되었다
- 이 정자 형성 과정의 감수 1분열에서는 상염색체에서 비분리가 1회, 감수 2분열에서는 성염색체에서 비분리가 1회 일어났다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 중복과 염색체 비분리 이외의 돌연변이와 교차는 고려하지 않으며, Ⅱ와 Ⅲ은 중기의 세포이다. A, a, B, b, D, d 각각의 1개당 DNA 상대량은 1이다.) [3점]

≺보기≻

- ㄱ. ⓐ + ⓑ + ⓒ + ⓓ = 5이다.
- ㄴ. P에서 a는 성염색체에 있다.
- ㄷ. IV에는 중복이 일어난 염색체가 있다.

5. 2021년 10월 교육청 모의고사 19번

19. 다음은 어떤 가족의 유전 형질 (가)와 (나)에 대한 자료이다.

- (가)는 대립유전자 H와 h에 의해, (나)는 대립유전자 R와 r에 의해 결정된다. H는 h에 대해, R는 r에 대해 각각 완전 우성이다.
- (가)와 (나)의 유전자는 모두 X 염색체에 있다.
- (가)는 아버지와 아들 @에게서만, (나)는 @에게서만 발현 되었다.
- \circ 그림은 아버지의 G_1 기 세포 I 로부터 정자가 형성되는 과 정을, 표는 세포 \bigcirc \sim ②에서 세포 1개당 H와 R의 DNA 상대량을 나타낸 것이다. \bigcirc \sim ②은 I \sim IV를 순서 없이 나타낸 것이다.

세포	DNA 상대량		
게포	Н	R	
9	1	0	
(L)	?	1	
€	2	?	
2	0	?	

- 그림과 같이 Ⅱ에서 전좌가 일어나 ②
 X 염색체에 있는 2개의 ② 중 하나
 가 22번 염색체로 옮겨졌다. ③는
 H와 R 중 하나이다.
- ⓐ는 Ⅲ으로부터 형성된 정자와 정상 난자가 수정되어 태어났다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으 며, H와 R 각각의 1개당 DNA 상대량은 1이다.) [3점]

- < 보기 >

- ㄱ. ③은 Ⅲ이다.
- ㄴ. ⑦는 R이다.
- ㄷ. @는 H와 h를 모두 갖는다.

6. 2022학년도 6월 평가원 모의고사 15번

15. 다음은 어떤 가족의 유전 형질 (가)에 대한 자료이다.

- (가)를 결정하는 데 관여하는 3개의 유전자는 모두 상염색체에 있으며, 3개의 유전자는 각각 대립유전자 H와 H*, R와 R*, T와 T*를 갖는다.
- 그림은 아버지와 어머니의 체세포 각각에 들어 있는 일부 염색체와 유전자를 나타낸 것이다. 아버지와 어머니의 핵형은 모두 정상이다.

- 아버지의 생식세포 형성 과정에서 ①이 1회 일어나 형성된 정자 P와 어머니의 생식세포 형성 과정에서 ⑤이 1회 일어나 형성된 난자 Q가 수정되어 자녀 ③가 태어났다. ①과 ⑥은 염색체 비분리와 염색체 결실을 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으며, H, H*, R, R*, T, T* 각각의 1개당 DNA 상대량은 1이다.) [3점]

--<보 기>-

- ㄱ. 난자 Q에는 H가 있다.
- 생식세포 형성 과정에서 염색체 비분리는 감수 2분열에서 일어났다.
- ㄷ. @의 체세포 1개당 상염색체 수는 43이다.

7. 2022학년도 수능 17번

17. 다음은 사람의 유전 형질 (가)~(다)에 대한 자료이다.

- (가)~(다)의 유전자는 서로 다른 2개의 상염색체에 있다.
- (가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B와 b에 의해, (다)는 대립유전자 D와 d에 의해 결정된다.
- P의 유전자형은 AaBbDd이고, Q의 유전자형은 AabbDd이며, P와 Q의 핵형은 모두 정상이다.
- 표는 P의 세포 I~Ⅲ과 Q의 세포 IV~Ⅵ 각각에 들어 있는
 A, a, B, b, D, d의 DNA 상대량을 나타낸 것이다. ⑤~⑥은
 0, 1, 2를 순서 없이 나타낸 것이다.

사람	all a	DNA 상대량					
	세포	A	a	В	b	D	d
	I	0	1	?	E	0	(L)
Р	П	0	(L)	9	?	9	?
	Ш	?	(L)	0	(C)	(E)	(L)
Q	IV	E	?	?	2	E	E
	V	(L)	E	0	9	E	?
	VI	(7)	?	?	(7)	(L)	(7)

- 세포 ⓐ와 ⓑ 중 하나는 염색체의 일부가 결실된 세포이고,
 나머지 하나는 염색체 비분리가 1회 일어나 형성된 염색체 수가 비정상적인 세포이다. ⓐ는 I~Ⅲ 중 하나이고, ⓑ는 IV~Ⅵ 중 하나이다.
- I~VI 중 @와 ⓑ를 제외한 나머지 세포는 모두 정상 세포이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으며, A, a, B, b, D, d 각각의 1개당 DNA 상대량은 1이다.)

----<보 기>-

- ㄱ. (가)의 유전자와 (다)의 유전자는 같은 염색체에 있다.
- ㄴ. IV는 염색체 수가 비정상적인 세포이다.
- 다. ⓐ에서 a의 DNA 상대량은 ⓑ에서 d의 DNA 상대량과 같다.

8. 2022년 7월 교육청 모의고사 20번

20. 다음은 어떤 가족의 유전 형질 (가)와 (나)에 대한 자료이다.

- (가)는 대립유전자 A와 a에 의해 결정되며, 유전자형이 다르면 표현형이 다르다.
- (나)는 1쌍의 대립유전자에 의해 결정되며 대립유전자에는
 B, D, E, F가 있다. B, D, E, F 사이의 우열 관계는 분명하다.
- (나)의 표현형은 4가지이며, ᄀ, ℂ, ፎ, 릲이다.
- (나)에서 유전자형이 BF, DF, EF, FF인 개체의 표현형은 같고, 유전자형이 BE, DE, EE인 개체의 표현형은 같고, 유전자형이 BD, DD인 개체의 표현형은 같다.
- (가)와 (나)의 유전자는 같은 상염색체에 있다.
- o 표는 아버지, 어머니, 자녀 $I \sim IV$ 에서 (나)에 대한 표현형과 체세포 1개당 A의 DNA 상대량을 나타낸 것이다.

구분	아버지	어머니	자녀 I	자녀Ⅱ	자녀Ⅲ	자녀IV
(나)에 대한 표현형	9	(L)	9	9	E	(2)
A의 DNA 상대량	?	1	2	?	1	0

○ 자녀 IV는 생식세포 형성 과정에서 대립유전자 @가 결실된 염색체를 가진 정자와 정상 난자가 수정되어 태어났다. @는 B, D, E, F 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으며, A, a 각각의 1개당 DNA 상대량은 1이다.) [3점]

----<보 기>-

- ㄱ. @는 E이다.
- ㄴ. 자녀 Ⅱ의 (가)에 대한 유전자형은 aa이다.
- 다. 자녀 IV의 동생이 태어날 때, 이 아이의 (가)와 (나)에 대한 표현형이 모두 아버지와 같을 확률은 $\frac{1}{4}$ 이다.

9. 2023학년도 9월 평가원 모의고사 18번

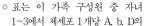
18. 다음은 어떤 가족의 유전 형질 (가)~(다)에 대한 자료이다.

- \circ (가)는 대립유전자 A와 A^* 에 의해, (나)는 대립유전자 B와 B^* 에 의해, (다)는 대립유전자 D와 D^* 에 의해 결정된다.
- (가)와 (나)의 유전자는 7번 염색체에, (다)의 유전자는 9번 염색체에 있다.
- 표는 이 가족 구성원의 세포 I~V 각각에 들어 있는 A, A*, B, B*, D, D*의 DNA 상대량을 나타낸 것이다.

구분	세포	DNA 상대량					
TE	시 포	A	A*	В	B*	D	D^*
아버지	I	?	?	1	0	1	?
어머니	П	0	?	?	0	0	2
자녀 1	Ш	2	?	?	1	?	0
자녀 2	IV	0	?	0	?	?	2
자녀 3	V	?	0	?	2	?	3

- 아버지의 생식세포 형성 과정에서 7번 염색체에 있는 대립유전자 つ이 9번 염색체로 이동하는 돌연변이가 1회 일어나 9번 염색체에 つ이 있는 정자 P가 형성되었다. つ은 A, A*, B, B* 중 하나이다.
- 어머니의 생식세포 형성 과정에서 염색체 비분리가 1회 일어나 염색체 수가 비정상적인 난자 Q가 형성되었다.
- P와 Q가 수정되어 자녀 3이 태어났다. 자녀 3을 제외한 나머지 구성원의 핵형은 모두 정상이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으며, A, A*, B, B*, D, D* 각각의 1개당 DNA 상대량은 1이다.) [3점]



—<보 기>-

- ㄱ. ①은 B*이다.
- ㄴ. 어머니에게서 A, B, D를 모두 갖는 난자가 형성될 수 있다.
- ㄷ. 염색체 비분리는 감수 2분열에서 일어났다.

10. 2024학년도 6월 평가원 모의고사 17번

17. 다음은 어떤 가족의 유전 형질 (가)~(다)에 대한 자료이다.

- o (가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B와 b에 의해, (다)는 대립유전자 D와 d에 의해 결정된다.
- (가)와 (나)의 유전자는 7번 염색체에, (다)의 유전자는 13번 염색체에 있다.
- 그림은 어머니와 아버지의 체세포 각각에 들어 있는 7번 염색체, 13번 염색체와 유전자를 나타낸 것이다.

DNA 상대량을 더한 &pglim U(A+b+D)과 체세포 pglim 1개당 a, b, d의 DNA 상대량을 더한 pglim 10년 나타낸 것이다.

구성원	자녀 1	자녀 2	자녀3	
DNA 상대량을	A+b+D	5	3	4
더한 값	a+b+d	3	3	1

- 자녀 1~3은 (가)의 유전자형이 모두 같다.
- 어머니의 생식세포 형성 과정에서 ⑦이 1회 일어나 형성된 난자 P와 아버지의 생식세포 형성 과정에서 ⓒ이 1회 일어나 형성된 정자 Q가 수정되어 자녀 3이 태어났다. ⑤과 ⑥은 7번 염색체 결실과 13번 염색체 비분리를 순서 없이 나타낸 것이다.
- 자녀 3의 체세포 1개당 염색체 수는 47이고, 자녀 3을 제외한 이 가족 구성원의 핵형은 모두 정상이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으며, A, a, B, b, D, d 각각의 1개당 DNA 상대량은 1이다.) [3점]

- ㄱ. 자녀 2에게서 A, B, D를 모두 갖는 생식세포가 형성될 수 있다.
- ㄴ. ۞은 7번 염색체 결실이다.
- ㄷ. 염색체 비분리는 감수 2분열에서 일어났다.

6. 돌연변이 - ⑩ 시환과 세포 분열 ~ ⑪ 시환과 유전

[Part 1]

1. 2021년 7월 교육청 모의고사 18번

18. 다음은 어떤 가족의 유전 형질 (가)와 (나)에 대한 자료이다.

- ○(가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B와 b에 의해 결정된다. A는 a에 대해, B는 b에 대해 각각 완전 우성이다.
- ○(가)와 (나)를 결정하는 유전자 중 1개는 X염색체에, 나머지 1개는 상염색체에 존재한다.
- ○표는 이 가족 구성원의 성별과 체세포 1개당 A와 B의 DNA 상대량을 나타낸 것이다.

구성원	성별	A	В
아버지	남	?	1
어머니	여	0	?
자녀 1	남	?	1
자녀 2	여	?	0
자녀 3	남	2	2

○부모의 생식세포 형성 과정 중 한 명에게서 대립유전자 ①이 대립유전자 ①으로 바뀌는 돌연변이가 1회 일어나 ②을 갖는 생식세포가, 나머지 한 명에게서 ⓐ 염색체 비분리가 1회일어나 염색체 수가 비정상적인 생식세포가 형성되었다. 이 두 생식세포가 수정되어 클라인펠터 증후군을 나타내는 자녀 3이 태어났다. ①과 ②은 각각 A, a, B, b 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않으며, A, a, B, b 각각의 1개당 DNA 상대량은 1이다.) [3점]

一 <보 기>-

- ㄱ. ⓒ은 A이다.
- ㄴ. ⓐ가 형성될 때 염색체 비분리는 감수 2분열에서 일어났다.
- 다. 체세포 1개당 a의 DNA 상대량 은 자녀 1이 자녀 2보다
 ㅋ다

2. 2023학년도 6월 평가원 모의고사 19번

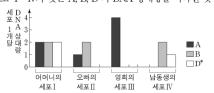
19. 다음은 어떤 가족의 ABO식 혈액형과 유전 형질 (가), (나)에 대한 자료이다.

- (가)는 대립유전자 H와 h에 의해, (나)는 대립유전자 T와 t에
 의해 결정된다. H는 h에 대해, T는 t에 대해 각각 완전 우성이다.
- (가)의 유전자와 (나)의 유전자 중 하나는 ABO식 혈액형 유전자와 같은 염색체에 있고, 나머지 하나는 X 염색체에 있다.
- 표는 구성원의 성별, ABO식 혈액형과 (가), (나)의 발현 여부를 나타낸 것이다.

구성원	성별	혈액형	(가)	(나)
아버지	남	A형	×	×
어머니	여	B형	×	0
자녀 1	남	AB형	0	×
자녀 2	여	B형	0	×
자녀 3	여	A형	×	0

(○: 발현됨, ×: 발현 안 됨)

 아버지와 어머니 중 한 명의 생식세포 형성 과정에서 대립 유전자 ⑦이 대립유전자 ⑥으로 바뀌는 돌연변이가 1회 일어나 ⑥을 갖는 생식세포가 형성되었다. 이 생식세포가 정상 생식세포와 수정되어 자녀 1이 태어났다. ⑦과 ⑥은 (가)와 (나) 중 한 가지 형질을 결정하는 서로 다른 대립 유전자이다.


이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않는다.)

- ㄱ. (나)는 열성 형질이다.
- ㄴ. ①은 H이다.
- 다. 자녀 3의 동생이 태어날 때, 이 아이의 혈액형이 0형이면서
 (가)와 (나)가 모두 발현되지 않을 확률은 $\frac{1}{8}$ 이다.

3. 2021학년도 6월 평가원 모의고사 16번

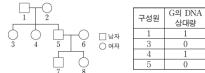
16. 다음은 영희네 가족의 유전 형질 (가)~(다)에 대한 자료이다.

- (가)는 대립유전자 A와 A*에 의해, (나)는 대립유전자 B와 B*에 의해, (다)는 대립유전자 D와 D*에 의해 결정된다.
- (가)와 (나)의 유전자는 7번 염색체에, (다)의 유전자는 X 염색체에 있다.
- ㅇ 그림은 영희네 가족 구성원 중 어머니, 오빠, 영희, ② 남동생의 세포 I~IV가 갖는 A, B, D*의 DNA 상대량을 나타낸 것이다.

○ 어머니의 생식 세포 형성 과정에서 대립유전자 つ이 대립 유전자 ①으로 바뀌는 돌연변이가 1회 일어나 ①을 갖는 생식 세포가 형성되었다. 이 생식 세포가 정상 생식 세포와 수정되어 ⓐ가 태어났다. ③과 ⓒ은 (가)~(다) 중 한 가지 형질을 결정하는 서로 다른 대립유전자이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으며, A, A*, B, B*, D, D* 각각의 1개당 DNA 상대량은 1이다.) [3점]

-<보 기>


- ¬. Ⅰ은 G₁기 세포이다.
- ㄴ. ြ)은 A이다.
- C. 아버지에서 A*, B, D를 모두 갖는 정자가 형성될 수 있다.

4. 2021학년도 수능 17번

17. 다음은 어떤 집안의 유전 형질 (가)에 대한 자료이다.

- (가)는 상염색체에 있는 1쌍의 대립유전자에 의해 결정되며, 대립유전자에는 D, E, F, G가 있다.
- D는 E, F, G에 대해, E는 F, G에 대해, F는 G에 대해 각각 완전 우성이다.
- 그림은 구성원 1~8의 가계도를, 표는 1, 3, 4, 5의 체세포 1개당 G의 DNA 상대량을 나타낸 것이다. 가계도에 (가)의 표현형은 나타내지 않았다.

상대량

- 1~8의 유전자형은 각각 서로 다르다.
- 3, 4, 5, 6의 표현형은 모두 다르고, 2와 8의 표현형은 같다. ○ 5와 6 중 한 명의 생식세포 형성 과정에서 @ 대립유전자 □이
- 대립유전자 \bigcirc 으로 바뀌는 돌연변이가 1회 일어나 \bigcirc 을 갖는 생식세포가 형성되었다. 이 생식세포가 정상 생식세포와 수정 되어 8이 태어났다. ①과 ①은 각각 D, E, F, G 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않으며, D, E, F, G 각각의 1개당 DNA 상대량은 1이다.) [3점]

- □. 5와 7의 표현형은 같다.
- ㄴ. ②는 5에서 형성되었다.
- □. 2~8 중 1과 표현형이 같은 사람은 2명이다.