공신 방송 다녀온 후기 & 수학 칼럼 연재합니다.
게시글 주소: https://i9.orbi.kr/00010768917
오늘 공신 방송 다녀왔습니다.
글만 쓰다보니 방송이 많이 어색했는데.. 잘하고 온 것 같아요.
저는 지금까지 공부 자극쪽으로의 글을 많이 써왔습니다.
그리고 제 살아온 이야기가 여러분, 혹은 독학생들에게 위로가 되었으면 했습니다.
제 글이 작년 꽤 인기가 있었던듯 합니다. 초록글도 가고 메인도 가고
제 스토리와 제 글이 그렇게 공감이 되었다는 것에 너무 감사합니다.
(사실 오늘도 공신 방송 하던중에 채팅으로 글 너무 잘 보고있다고 적어주시더라구요.
정말 감사합니다. 어떻게 아프리카 TV까지 와서 적어주시나여..ㅠㅠㅠ 우어엉)
제 스토리는 이제 많이 이야기 한 것 같습니다.
어찌보면 참 신기한 이야기입니다. 아무것도 없는 사람이 어찌보니 과분한 것을 받습니다.
이제 제가 어떻게 생각하고 고민해왔는지 그 방법을 직접 칼럼으로 알려드리고 싶어요.
조금 더 많은 시도를 하고싶어요. 제 글과 방송으로 제 얘기를 들려드렸다면
이제 제 생각의 과정도 공유하고 싶습니다.
결국 제 공부의 핵심은 생각하는 것이었습니다.
그런데 도대체 그 생각의 방식이 도대체 뭘까요?
교과서적인 사고와 교과서적인 고민이 도대체 뭘까요?
저도 사실 잘 모르겠어요.. 아직까지도 모르겠습니다.
저는 그냥 의문이 되게 많았어요 그걸 스스로 해결하면서 실력을 올렸습니다.
그 의문들과 답을 칼럼형식으로 올려보고자 합니다.
칼럼은 질문과 답변 형식으로 쓸 계획입니다.
시작할게요.
이차방정식의 해법인 인수분해와 근의공식은
어떤 공통적인 특징이 있을까?
이차방정식을 그 형태 그대로 풀 수는 없습니다.
반드시 인수분해 혹은 근의 공식으로 풀어야합니다. 그렇다면
이차방정식의 해법 두가지는 어떤 원리로 생겨난걸까요?
⊙두 수 또는 두 식 A,B 에 대하여 AB=0이면 A=0또는B=0 이다.
이차방정식을 인수분해 할 수 있는 경우라면
AB=0이면 A=0또는B=0 임을 이용하여 인수분해로 해를 구할 수 있다.
⊙
물론 제 답이 정답은 아닐 수 있어요. 하지만 꽤 설득력 있을거라 생각합니다.
많은 의견 댓글로 달아주셔요! 답은 오늘 방송에 말씀드렸지만..! 다음 칼럼에 올리도록 하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이신혁쌤 2
은 누구랑 결혼할까 나엿으면…
-
성대 점공 0
성대 교육 644 후반인데 현재 9/19임... 15명 뽑고 지원자 총 50명인데 붙겠죠 제발
-
갑자기 유아퇴행을 조져버리네 ㅅㅂ
-
기해분이나아요?
-
아직 젊은데 아이홀 각인가 나쁘지않아
-
25수능 수학이 백분위 65%로 4등급이었는데 2등급까지 올릴 수 있을까요? ㅠㅠ...
-
EFT가 뭐에요? 10
Eft 세계에 오신것을 환영한다는데 eft가 뭔질알아야죠.
-
어디간 거? 597인데 80등인가 90등이었는데 실지원
-
5-6등급애들 전문으로함 숙제 안하는애, 책 좋아하는데 지문 기억을 못하는애...
-
갑자기 궁금해짐 저게 안암캠퍼스 아니고 세종캠퍼스라던데
-
이 대학에 들어온 이상 희망은 없다 욘쎄이! (진심 아님)
-
한양댄가? 싶었던적 개많긴함 ㅋㅋ 냥대 외대 앞모습은 재학생도 구별못해요
-
아 그때 연수는 아니겠지 설마
-
589면 평백95정돈데..... 참고로 33명 모집중 점공 33등
-
2호선에서 경북대학교 과잠 이런거 아니고 인서울 어디든 입고다녀도 아무도 신경...
-
내가 계산실수 많이하는 이유를 깨달아버렸달까
-
세대차이는 5
02부터 07까지 세대차이가 제일 많이 나는 듯
-
가면 20살한테쳐맞나요?
-
ㄱㄱ혓.
-
님들 아구몬 아셈..? 17
비디디 솔랭 닉네임 아구몬이길래 이름부터 귀여울것같아서 찾아보고 놀랐음.. 예?
-
안녕하세요 두 번째 공부 이야기 [2] 실수와 싸우는 방법 -부제 : 다짐은...
-
1등은 누나네 ㅇㅅㅇ 안되겠다 서울대가서 학력1등해야겟슴
-
좀 많이 낮은 대학이고 40명 정도 뽑습니다. 마지막 예측에서 6칸 추합,...
-
점공 너무 안하네요 다들
-
히히배부르당 6
-
현시점 현역이 11
치대 최저를 맞추는 가장 현실적인 방안이 뭐가 있을까요.. 수 + 영 + 사탐 vs 국영수
-
저거 저렇게 독점시장으로 냅두니까 그냥 맘대로 하잖아 진학사가 공공기관도 아닌데...
-
내가 이렇게 태어난걸 어쩌겟니 그냥 달게 받아라
-
ㅈㄱㄴ
-
비갤은 참... 11
언제봐도 어이가 없군뇨
-
엔수생인데 작년엔 인강강사 거 밖에 안 풀었어서 작년거라도 지금 풀려구요 퀄 좋은 거 머 잇슴요
-
나 사실 여르비임 18
구라야
-
안녕하세요! 인증 먼저 하는 것이 맞는 듯 해서 올립니당 작년에 국어 "때문에"...
-
수학 미적분 0
수학 12 미적 모두 김기현듣고있고 미적 아이디어 들을 예정임 근데 아이디어랑...
-
대체 왜 만든거임 이해가안되네 쿼터 때문이면 지금 정시비율 예체능과에 몰아주듯 저...
-
누가 더 좋음?
-
내일 모레 1심 판결
-
두개 먼차이임??
-
제가 국어는 못하는게 아닌데 수학을 더럽게 못해서 1년 더 하게 되었는데 6모...
-
나도 사실 여르비임 13
사실 지금까지 ㅇㅈ한건 다 내 남친임 아무튼 그럼ㅇㅇ
-
아 김동욱때문에 메가사야하나 진짜 미치겠네 김동욱 대체로 정석민 듣기는 뭔가 성이...
-
ㅈㄱㄴ
-
맞팔하실분 8
케헤헤
-
학종 반영과목 0
이제 고2 올라가는 학생입니다. 국수사과영한만 하면 1.7이 뜨고 전과목으로 하면...
-
얼마나 많은지 궁금하네요 N수는 5정도는 돼야하지 않겠어요? 재수 삼수는 애기죠 애기
-
샤프도 하나 좋은걸로 장만해야하나... 필통 속의 미친 빈부격차를 몇 달째 느끼고...
-
젠지 - 한화 거치면서 팀 플레이가 만족스럽지 못할때마다 범인으로 지목받아왔음에도...
-
내년부터 원광치 인문 고작 2명뽑음 ㅋㅋㅋ 원광>>이거 내년에 싹다 절반 미만으로 뽑는게 ㄹㅈㄷ임
-
집도착 2
홈스윗홈
-
[단독]與 유용원 ‘송민호 방지법’ 추진… 사회복무요원 출퇴근 전자 관리 2
6일 유용원 의원 ‘병역법 개정안’ 대표 발의 현행 수기 관리에서 정보시스템...
그리고 저거 제가 직접 쓴거라서 악필입니당..ㅠㅠ
공통점이나 특징을 발견해주시면 돼요! 생각과 고민 많이해주시면 됩니다!
일반청님 나오신거 어디서 다시볼수 있나요?
유튜브에 올라와있는데, 사정이있어서 유튜브동영상 게시하지 않아달라고 예전에 요청드렸습니다.
클립만 있을것입니다. 미안해요.. 제가 조금이나마 더 글로써라도 많이 알려드리도록 하겠습니다.