이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까?
게시글 주소: https://i9.orbi.kr/00010789384
안녕하세요. 일반청의미입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의 양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
그렇습니다. 그래서 질문과 답변 칼럼을 올려볼거에요
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
보신분 많이 없으실텐데..ㅋㅋ
오늘은 칼럼 요청이 들어와서 쓰게 되었습니다.
일단 저번주의 답을 첨부합니다.
매우 간단하죠..? ㅋㅋ
이제 오늘의 칼럼 띄워봅니다!
점 (a,b)를 x축으로 m만큼 평행이동하면 (a+m,b)가 되는데
왜 함수 y=f(x)를 x축으로 m만큼 평행이동하면 y=f(x-m)이 될까?
분명 점을 x축으로 평행이동 하면 x값이 늘어나는거 맞겠죠?
하지만 그래프의 x값은 왜 빼지는걸까요?
그래프의 모든 점의 x값이 늘어난것이 맞는데 말이죠.
많은 의견을 덧글로 달아주세요! 제가 생각하는 답은 다음 칼럼에 달겠습니다.
힌트를 드리자면.. 저 그림을 잘 보셔요! x값은 변할겁니다 x축 평행이동이니까요.
물론.. 제 답이 정답은 아니겠지만.. 꽤 설득력 있을거에요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
난 검색을 해보고 질문을 하였고 실제로 구글에도 안뜨는데 무지성 핑프몰이<<아오...
-
등수 이거맞냐 희망회로 ㅈㄴ 돌리게되는데 ㅋㅋㅋ 좀 더 들어와주세요 ㅈㅂ
-
뭐 다른거좀 하다오니까 끝나있네
-
삼수 삼반수 10
님들이라면 어떤 쪽이 나아 보이시나요??(자꾸 올려서 죄송합니다;;;) 경찰대...
-
한양대 수학 ㄷㄷ 어쩌다 사시봤지 ㅋㅋㅋㅋ 인생 ㅈㄴ 궁금하네
-
한문 인강 레츠고
-
어차피 너네 영어 안쓰잖아
-
사알짝 위험하네
-
내일로 미뤄야겠다
-
나랑 사궈자 0
응않되
-
장기간 동결에 시설 노후화 학생 부정적 기류도 옅어져 연·고대 결정에 관심커져...
-
적백 통백 기백 9
아닌가 확백이 어감이 더 낫나
-
새벽에 ㅇㅈ 2
하면 많이보려나
-
인증할게 업씀 1
존 못이라;;
-
동점자 기준도 영어우선은 시발련아 아
-
고민이 된다 2
내 2년 돌려내
-
옯끼야아악 6
4년 전에 있던 사람이 지금도 있음
-
맨유 특 3
맹구임
-
인증을 안한다...
-
콘서트 9
노브레인을 아시나요
-
ㅇㅈ 1
이거 올리자마자 봐도 다 애니사진밖에 없는데 다들 어떻게 본거냐
-
수능 대비를 이제 막 시작한 07. 너무나 쫄립니다. 내신 선택과목 물화지지만...
-
외모 안보고 다 기만이라 달아줌 1004력 ㅁㅌㅊ?
-
첫 메이드 카페 후기 16
메이드분들 고생이 많으셨다 즐거웠다 술을 많이 마셨다 같이 사진을 찍었다 오이시쿠...
-
자유전공 2
1학년때 과잠사고 2학년때 또 사나요?
-
호옥시...맞-팔...원합니다만...괜찮을까요...횐님덜...
-
축구시작 2
ㅍㅇㅌㅍㅇㅌ
-
현역수능 14213 언미생윤사문 취업안된다고해서 공대가려는데 숙대 국민대 숭실대...
-
옯끼야아악 1
-
전 진짜 훨 좋아짐 질문 받는다 아 근데 얼굴 큰건 걍 사고임 못고침
-
진짜 못하는것도 하루이틀이어야지 새벽마다 경기보다 현타오는데 탈맨유할 사유가 필요함
-
예비고3분들 2
인강 ㄷ 자습 비율 어느정도로 하시는지 궁금해요! 몇대다정도가 적당할까요?
-
부산 살고 싶다 1
그러하다
-
겠니
-
그것은 바로 부산
-
베타메일이 될 수 있어!
-
술먹을까 ㅅㅂ
-
머구한 63명중 20명들어옴 8명뽑는데 12등 입갤 ㅋㅋ 고려대.. 가야겠지?
-
셀카 잘찍는 법 3
알려주시면 인증해보겠습니다 원하진 않으시겠지만
-
냉장고에서 딸기시루 남은거나 퍼먹어야지
-
신설학과 과잠 0
신설학과인 외대 특수언어계열 썼고, 합격할거 같은데 신설학과들은 과잠도 없고,...
-
왜케 많이했지 갑자기 현타오는
-
해주세요
-
Lea-runing Mate Season 0 오픈. 0
Lea-runing mate Season 0 사이트:...
-
ㅇㅈ 13
-
2025로 잘못사서
-
28/84 0
남은 143명중 내위에 7명 미만일 확률을 구하시오 ^^
원래 x값에 m을 더한 값을 대입해서 원함수의 값이 나오는 식이 되어야 하니까 그런가요??
맞습니다!
축의 이동
축의 이동은 어떤 개념인가요?
설명해주시겠어요??
간단히 이야기하자면, 도형은 가만히 있고 도형을 설명해주는 두 기저의 기준점 (축) 을 반대로 움직인다고 생각하는거죠.
사실 이해할 수 있는 얘기긴 한데..
교육과정에서는 축을 이동하는 법을 안배우긴 해요.
그래도 이해하기 좋은 설명이 될 것 같아요!
사실 교육과정 해설서에도 명시되어 있어요.
'도형의 평행이동에 대해 설명할 때에는 축의 이동을 통해 설명하지 않는다.'라고
다만 굉장히 직관적으로 이해가 되고 축의 의미가 무엇인지 생각만 해보면 바로 이해가 되는지라 ㅎㅎ
(x,y) = (a,b)(원래 함수 위의 점)
(X,Y) = (a+m,b)(x축으로 +m만큼 이동한 함수 위의 점)
(a,b) = (X-m,Y) = (x,y)
따라서 x축으로 +m만큼 이동한 임의의 x,y에 대해
(x,y) = (X-m,Y)를 넣어서 식을 정리하니까
결국 +로 이동했으나 부호는 -로 붙어 나오게 되는것
아마 첨에 배울때 이랫던거같은데 맞는지는 잘몰겟네요;
네 맞아요. 그게 교과서의 설명 방식입니다.
그 수식의 의미를 쉽게 설명하면 어떻게 될까요?
음... 명쾌하게 설명하기가 어렵네요. 생각을 해봐야겠어요...
저도 이 주제에 대해 많은고민했었는데, 제가 얻은 결론은 이렇습니다.
예를들어 정의역이 0이상 1이하인 함수가 있다고 칩시다. 이 함수를 x축방향으로 1만큼 이동시킨다는 것은 정의역을 1이상 2이하로 변화시킨다는것이에요. 하지만 치역, 즉 y값은 변하지 않아야 하죠. 이런 점을 고려하면 함수를 x축방향으로 이동시킬때는 정의역범위를 변화시키면서, y값은 유지시켜줘야해요. 그래서 정의역을 이동시키려는 값만큼 증가시키고, 그래프식 안에있는 x는 이동시키려는 값만큼 빼주는겁니다.
그런데 보통 함수에 대해 논의할때는 실수전체가 정의역의 범위가 되죠. 그래서 증가된 정의역범위가 드러나지 않고, 그래프에서 x가 x-m으로 변하는것만 보이게됩니다.
맞습니다..만 굳이 정의역을 제한하지 않아도 될것같아요
y값이 변하지 않는다는 말만 해주셔도 될듯합니다!
으어... 많은 분들이 생각을 올려주시네요.. 감사합니다!
모든 덧글이 다 옳은 설명이라.. 제가 뭐라 하기 어렵네요.
하지만 제가 생각하는 답은 한줄입니다! 꽤 설득력 있다고 저는 생각해요
저 식과 그림에서 간단한 특징 하나를 뽑을 수 있어요.
뭐랄까 마치 숨은그림찾기 하는 것과 같다고 봅니다.
굳이 이 개념뿐만 아니에요. 여러분은 개념을 깊이 생각하고 있나요?
이렇게 고민 해보신 적이 있으신가요?
저는 생각과 고민이 공부의 양이라 생각합니다. 생각과 고민은 이렇게 질문에서 생기게됩니다.
저렇게 개념에 대해 접근해보다 보면 정말 공부 많이 될것같아요... 수학적 직관력이 빵빵 터질것같은!
평행이동한 함수를 새로운 함수라고 생각하면 이 새로운 함수의 x에다가 뭘 집어넣어야 평행이동 이전에 함수값과 같아질까? 라고 생각해보면 기존 함수를 x 축으로 +m 평행이동한 함수가 새로운 함수이니 이 함수에는 x 에서 +m 만큼 빼주면 이전의 함수와 같은 값을 같겠구나 ! 라고 생각해서 새로운 함수 = f(x-m)
요로케 설명해보고싶네요
맞습니다! 다들 너무 맞는 말씀이어요.
다만 어려운 설명일 수 있어요.
사실 그렇다고 해도 어쨌든 자기가 이해할 수 있는 좋은방식으로 이해하면 장땡이죠.
결국 개념에 대한 고민이란건 최대한 쉬운언어로 받아들이는것.
그걸 사용하기 쉽도록 보이는것을 말합니다.
저도 이거 잘하는지 잘 모르겠어요 ㅎㅎ
덧글 달아주신 모든 의견이 맞는 얘기해주셔서.. 쓸게없네요ㅋㅋ
이번주 토요일 저녁에 칼럼 올리겠습니다.
참 간단한 의문인데, 헷갈릴법한 질문이기도 해요
전 칼럼의 질문은 이차방정식의 해법의 공통점입니다.
저는 10-가의 내용을 배웠습니다. 지금 수1 전 교육과정이죠
10-가에서는 일차방정식 다음에 이차방정식 단원이 있었습니다.
그것으로 유추해보면 이차방정식의 풀이의 핵심을 끌어낼 수 있었죠.
교과서만으로 의문을 갖고 해결하는 공부를 많이 했습니다.
그 과정까지 아울러 설명해보도록 하겠습니다.
생각과 고민이 공부의 양입니다.
교과서만으로도 충분히 공부할 것이 있어요.
그것을 여러 질문으로 전달하도록 하겠습니다