이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까?
게시글 주소: https://i9.orbi.kr/00010789384
안녕하세요. 일반청의미입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의 양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
그렇습니다. 그래서 질문과 답변 칼럼을 올려볼거에요
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
보신분 많이 없으실텐데..ㅋㅋ
오늘은 칼럼 요청이 들어와서 쓰게 되었습니다.
일단 저번주의 답을 첨부합니다.
매우 간단하죠..? ㅋㅋ
이제 오늘의 칼럼 띄워봅니다!
점 (a,b)를 x축으로 m만큼 평행이동하면 (a+m,b)가 되는데
왜 함수 y=f(x)를 x축으로 m만큼 평행이동하면 y=f(x-m)이 될까?
분명 점을 x축으로 평행이동 하면 x값이 늘어나는거 맞겠죠?
하지만 그래프의 x값은 왜 빼지는걸까요?
그래프의 모든 점의 x값이 늘어난것이 맞는데 말이죠.
많은 의견을 덧글로 달아주세요! 제가 생각하는 답은 다음 칼럼에 달겠습니다.
힌트를 드리자면.. 저 그림을 잘 보셔요! x값은 변할겁니다 x축 평행이동이니까요.
물론.. 제 답이 정답은 아니겠지만.. 꽤 설득력 있을거에요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
칼국수 맛집에 빵집 개많음 걍 수도로 하자
-
만약 진짜 주량이 반병이라면 한잔이라고 해야함
-
어떻게 매를 얼릴 수가 있음 너무하네
-
이걸 실제로 1월에 쓰곤 했던ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아 그립다.
-
동사 누구들음 8
현역때 이다지 풀커리탔음 근데 이번 수능 동사에서 아무리 생각해도 이거 다맞으려면...
-
아 점공 ㅅㅂ 0
하나 밀렸다......내 뒤로 와 제발......
-
야무진 조합
-
[단독] 의대생 단체, 올해에도 ‘휴학계 제출’로 대정부 투쟁 7
정부의 의대 증원 정책 등에 반발해 휴학 중인 의과대학 학생들이 작년에 이어...
-
지거국이고 정시 14명 뽑고 마지막 업데이트때 30명중에 1등 7칸이였고 일주일넘게...
-
70명 좀 넘게 모집하는데
-
노래 잘 불러지나요
-
Eft 아니고요 etf도 아니며 nft도 아닙니다. 근데 제목은 낚시가 아니라 진짜입니다.
-
봇치 수학을 풀던 중 10
너무 어렵다... 수1 지수로그에서 벽느끼는 중... 정상모T 올인원 넘 어렵다...
-
ㅈㄱㄴ
-
덕코어디다쓰나요 6
진짜 교통카드 됨?
-
하면 봄?
-
너 ○○ 쌓여있잖아 15
빈칸에 들어갈 말로 옳은 것을 쓰시오.
-
이거 사면 유용한가요?? 이동할때 영어 공부용으로 살까하는데 패드 이미 13인치...
-
육군 군수 질문 6
디시에 물어봤을땐 아무도 답변 안해주던데 오르비분들은 친절하신거 같아서...
-
난 둘이 구분 거의 못하겠음
-
이신혁쌤 2
은 누구랑 결혼할까 나엿으면…
-
성대 점공 0
성대 교육 644 후반인데 현재 9/19임... 15명 뽑고 지원자 총 50명인데 붙겠죠 제발
-
갑자기 유아퇴행을 조져버리네 ㅅㅂ
-
기해분이나아요?
-
아직 젊은데 아이홀 각인가 나쁘지않아
-
25수능 수학이 백분위 65%로 4등급이었는데 2등급까지 올릴 수 있을까요? ㅠㅠ...
-
EFT가 뭐에요? 10
Eft 세계에 오신것을 환영한다는데 eft가 뭔질알아야죠.
-
어디간 거? 597인데 80등인가 90등이었는데 실지원
-
5-6등급애들 전문으로함 숙제 안하는애, 책 좋아하는데 지문 기억을 못하는애...
-
갑자기 궁금해짐 저게 안암캠퍼스 아니고 세종캠퍼스라던데
-
이 대학에 들어온 이상 희망은 없다 욘쎄이! (진심 아님)
-
한양댄가? 싶었던적 개많긴함 ㅋㅋ 냥대 외대 앞모습은 재학생도 구별못해요
-
아 그때 연수는 아니겠지 설마
-
589면 평백95정돈데..... 참고로 33명 모집중 점공 33등
-
2호선에서 경북대학교 과잠 이런거 아니고 인서울 어디든 입고다녀도 아무도 신경...
-
내가 계산실수 많이하는 이유를 깨달아버렸달까
-
세대차이는 5
02부터 07까지 세대차이가 제일 많이 나는 듯
-
가면 20살한테쳐맞나요?
-
ㄱㄱ혓.
-
님들 아구몬 아셈..? 17
비디디 솔랭 닉네임 아구몬이길래 이름부터 귀여울것같아서 찾아보고 놀랐음.. 예?
-
안녕하세요 두 번째 공부 이야기 [2] 실수와 싸우는 방법 -부제 : 다짐은...
-
1등은 누나네 ㅇㅅㅇ 안되겠다 서울대가서 학력1등해야겟슴
-
좀 많이 낮은 대학이고 40명 정도 뽑습니다. 마지막 예측에서 6칸 추합,...
-
점공 너무 안하네요 다들
-
히히배부르당 6
-
현시점 현역이 11
치대 최저를 맞추는 가장 현실적인 방안이 뭐가 있을까요.. 수 + 영 + 사탐 vs 국영수
-
저거 저렇게 독점시장으로 냅두니까 그냥 맘대로 하잖아 진학사가 공공기관도 아닌데...
-
내가 이렇게 태어난걸 어쩌겟니 그냥 달게 받아라
-
ㅈㄱㄴ
-
비갤은 참... 11
언제봐도 어이가 없군뇨
원래 x값에 m을 더한 값을 대입해서 원함수의 값이 나오는 식이 되어야 하니까 그런가요??
맞습니다!
축의 이동
축의 이동은 어떤 개념인가요?
설명해주시겠어요??
간단히 이야기하자면, 도형은 가만히 있고 도형을 설명해주는 두 기저의 기준점 (축) 을 반대로 움직인다고 생각하는거죠.
사실 이해할 수 있는 얘기긴 한데..
교육과정에서는 축을 이동하는 법을 안배우긴 해요.
그래도 이해하기 좋은 설명이 될 것 같아요!
사실 교육과정 해설서에도 명시되어 있어요.
'도형의 평행이동에 대해 설명할 때에는 축의 이동을 통해 설명하지 않는다.'라고
다만 굉장히 직관적으로 이해가 되고 축의 의미가 무엇인지 생각만 해보면 바로 이해가 되는지라 ㅎㅎ
(x,y) = (a,b)(원래 함수 위의 점)
(X,Y) = (a+m,b)(x축으로 +m만큼 이동한 함수 위의 점)
(a,b) = (X-m,Y) = (x,y)
따라서 x축으로 +m만큼 이동한 임의의 x,y에 대해
(x,y) = (X-m,Y)를 넣어서 식을 정리하니까
결국 +로 이동했으나 부호는 -로 붙어 나오게 되는것
아마 첨에 배울때 이랫던거같은데 맞는지는 잘몰겟네요;
네 맞아요. 그게 교과서의 설명 방식입니다.
그 수식의 의미를 쉽게 설명하면 어떻게 될까요?
음... 명쾌하게 설명하기가 어렵네요. 생각을 해봐야겠어요...
저도 이 주제에 대해 많은고민했었는데, 제가 얻은 결론은 이렇습니다.
예를들어 정의역이 0이상 1이하인 함수가 있다고 칩시다. 이 함수를 x축방향으로 1만큼 이동시킨다는 것은 정의역을 1이상 2이하로 변화시킨다는것이에요. 하지만 치역, 즉 y값은 변하지 않아야 하죠. 이런 점을 고려하면 함수를 x축방향으로 이동시킬때는 정의역범위를 변화시키면서, y값은 유지시켜줘야해요. 그래서 정의역을 이동시키려는 값만큼 증가시키고, 그래프식 안에있는 x는 이동시키려는 값만큼 빼주는겁니다.
그런데 보통 함수에 대해 논의할때는 실수전체가 정의역의 범위가 되죠. 그래서 증가된 정의역범위가 드러나지 않고, 그래프에서 x가 x-m으로 변하는것만 보이게됩니다.
맞습니다..만 굳이 정의역을 제한하지 않아도 될것같아요
y값이 변하지 않는다는 말만 해주셔도 될듯합니다!
으어... 많은 분들이 생각을 올려주시네요.. 감사합니다!
모든 덧글이 다 옳은 설명이라.. 제가 뭐라 하기 어렵네요.
하지만 제가 생각하는 답은 한줄입니다! 꽤 설득력 있다고 저는 생각해요
저 식과 그림에서 간단한 특징 하나를 뽑을 수 있어요.
뭐랄까 마치 숨은그림찾기 하는 것과 같다고 봅니다.
굳이 이 개념뿐만 아니에요. 여러분은 개념을 깊이 생각하고 있나요?
이렇게 고민 해보신 적이 있으신가요?
저는 생각과 고민이 공부의 양이라 생각합니다. 생각과 고민은 이렇게 질문에서 생기게됩니다.
저렇게 개념에 대해 접근해보다 보면 정말 공부 많이 될것같아요... 수학적 직관력이 빵빵 터질것같은!
평행이동한 함수를 새로운 함수라고 생각하면 이 새로운 함수의 x에다가 뭘 집어넣어야 평행이동 이전에 함수값과 같아질까? 라고 생각해보면 기존 함수를 x 축으로 +m 평행이동한 함수가 새로운 함수이니 이 함수에는 x 에서 +m 만큼 빼주면 이전의 함수와 같은 값을 같겠구나 ! 라고 생각해서 새로운 함수 = f(x-m)
요로케 설명해보고싶네요
맞습니다! 다들 너무 맞는 말씀이어요.
다만 어려운 설명일 수 있어요.
사실 그렇다고 해도 어쨌든 자기가 이해할 수 있는 좋은방식으로 이해하면 장땡이죠.
결국 개념에 대한 고민이란건 최대한 쉬운언어로 받아들이는것.
그걸 사용하기 쉽도록 보이는것을 말합니다.
저도 이거 잘하는지 잘 모르겠어요 ㅎㅎ
덧글 달아주신 모든 의견이 맞는 얘기해주셔서.. 쓸게없네요ㅋㅋ
이번주 토요일 저녁에 칼럼 올리겠습니다.
참 간단한 의문인데, 헷갈릴법한 질문이기도 해요
전 칼럼의 질문은 이차방정식의 해법의 공통점입니다.
저는 10-가의 내용을 배웠습니다. 지금 수1 전 교육과정이죠
10-가에서는 일차방정식 다음에 이차방정식 단원이 있었습니다.
그것으로 유추해보면 이차방정식의 풀이의 핵심을 끌어낼 수 있었죠.
교과서만으로 의문을 갖고 해결하는 공부를 많이 했습니다.
그 과정까지 아울러 설명해보도록 하겠습니다.
생각과 고민이 공부의 양입니다.
교과서만으로도 충분히 공부할 것이 있어요.
그것을 여러 질문으로 전달하도록 하겠습니다