미통기에서 사차함수 고난도 문제로 나올까요.
게시글 주소: https://i9.orbi.kr/0001100047
박승동 샘은 미통기에서 주로 다루는 것은 삼차함수이고, 사차함수는 개형 정도만 알아두면 된다는 식으로 말씀하고 넘어가시던데...
한석원 샘은 삼차함수는 반드시 나오고... 사차함수도 충분히 나올 수 있다고 그러시는데...
기본서나 교과서 익힘책 같은 경우에서도 <심화학습> 이런 챕터로 분류해서 따로 나오던데...
아마 가형과 겹치는 어려운 문제로 나오겠지요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
공대 가려면 수원대 공대가 그나마 나을까요? 가천,경기라인은 안될거같고 외대글캠 자연과들도 못가죠?
-
고경제 안정에 설대 스나 노리고 있을텐데
-
알려주새오
-
사귀던 여자친구가 정말 착하고 친절하고 예의바르고 예쁘고 잘해줬는데 알고보니...
-
이제부터 랜덤탄다.
-
고2 교육청으로 본 3개의 수학 시험들중 다 합해서 3개까지 틀렸을면 가세요 아님...
-
님들 양심적으로 2
나형은 100이어도 과외안하겠죠?
-
둘이서 6병 마셧다 기억 안남
-
하던 거나 해야지.
-
설자전 가능? 0
자전 기준 411.7 가능할까요 ..?
-
오지훈 딱 대라
-
기차지나간당 6
부지런행
-
국어 언매 3컷 1
공통 -18 선택 -5 합쳐서 77인데 3컷 불가능할까요? 메가 기준으론 표점...
-
맛있더라 그래서 지금 피곤해
-
수학 노베 0
예비 고3인데, 현재 모고 수학 5로 노베입니다. 내신이 썩 좋은편은 아니라...
-
조오온나 피곤하네.
-
다 일어나서 글써
-
여기는 또리가 점령한다 !
-
현대소설 중 이런 문학 있는 느낌
-
아침이 즐겁구나 0
공식 6연승 대 꼬 마
-
메가 덕분에 인테그랄 쓰고 있긴 한데 솔직히 개구림 내가 만들어도 이거보단 나을 거 같은데;
-
퍼즐퍼즐퍼어즐 2
퍼..
-
ㄹㅇ
-
목동 시대 단과 0
이동준쌤 목동 시대 단과 공통반 마감이던데 라이브반이나 어떻게 들을 방법 없을까요?...
-
천잰데?
-
깨고 싶지 않은데 7시만 돼면 눈이 떠지는 이 기묘한 시츄에이션…
-
나지금지하철 3
학교 일등으로 가겠구나
-
잠이안옴
-
응떡 마렵네 0
이따 먹을까
-
얼리버드 취침 4
-
당황스럽네 뭐지 진짜 둘다 1 못받은건 이번이 처음이라 그런가
-
크아아아!!! 얼버기 13
오늘? 2시에 자는 사소한 이슈로 인해 기상이 쉽지 않았네요... (저는...
-
시대 겨울 단과 1
시대 단과 처음 갈 예정입니다. 미적 개념을 듣고 싶은데 어떤 선생님이 좋을까요?
-
근본적인? 행복은 존재에서 나오는게 아닐까 사람들이 우선 성취에서 기쁨을 느끼지만...
-
얼버기 3
ㅈㄱㄴ 오늘도 화이팅!
-
김민재 골이라니 4
ㅇㄱㅈㅉㅇㅇ?
-
기상 완료 드디어 오늘 예비군 마지막날
-
열심히 해보곤 있는데 원래 과탐에 stay 할 것 같네요,,, 십헬과목
-
인듯... 외모관리 중요한듯.
-
선결론) 물2 24.77, 47, 99, 69~70 화2 23.80, 44,...
-
궁금한게 2년뒤 대학에 입학하려면 최소 공군을 5월에 입대해야하는데 커트라인 보니깐...
-
77ㅓ억 간만에 대승이구나
-
얼버기 1
진짜 이른 기상이다 수도병원 가야해 피곤s
-
다 맞게써도 답안이 교수님 맘에 안들면 합격 못한다는거 진짠가여!?ㅠㅠ
-
안녕하세요 고3 정시생입니다 제가 고2 6모때 수학 높5맞고 고2 8월에 정시로...
-
밤샌다매. 12
님들아. 잠 안잘거라매.
-
ㄱ ㄱㄱㄱㄱㄱ
-
Ebs 기준으로 컷예측하고 ebs가 타사이트보다 백분위랑 표점이 널널해서다<< 라는...
-
아짜증남 0
대충 수능 망쳐서 딴 사람하고 비교되어 슬프다는 글썼는데 이런 글쓸시간에...
-
챔스보자
기존 7차때 수학2에서도 교과서에는 사차함수 따위는 깨알같이 써져있고 삼차함수만 엄청나게 설명되어있는데 평가원 문제는 삼차함수보다 사차함수가 더 많이
나왔을정도로 학생들을 안드로메다로 보냈죠.
미통기라고 해서 못할게 없죠. 분명 한문제만큼은 애들 씨말리는걸 분명히 낼텐데...
결국 올해 수리 나형은 그 한문제로 변별력을 확보하려고 하겠군요.
네 제 예상이 맞다면 나형은 미분에서 한문제로 끝장을 보려할것 같고(가/나 공통문제)
가형은 미분 말고도 하나 더 끝판왕을 보게하는(기하와 벡터 가능성이 높아요... 단원은 모릅니다. 벡터일수도있고 공도일수도있고..) 문제가 나와서 2문제로
변별력을 가르려고 할것 같아요.
이런 상담글이나 질문글 자주 받으시겠지만... 수1 상하와 미통기 상하에 대한 비중은 어떻게 두어야 할까요?
개인적으로는 작년에 순열조합, 확통 쪽이 좀 빵꾸 났었는데요.
순열 조합이 사실상 단원명에서는 빠졌지만 고1 수학에 버젓이 자리잡고 있고... 중복 조합이나 확률 계산하는 데 있어서는 그 영향력이 줄지 않았다고 생각하는데요.
포카칩님 예상하시기로는 수1과 미통기 하편은 작년 6, 9월 수준(나형)으로 나올까요? 중복 조합이 꽤나 까다롭던데... 그럼에도 불구하고 미적분에서 한 문제 정도로 1등급 컷이 결정 될까요?
작년 6/9평 수준으로 내면 매우 무난한편이죠. 중복조합으로 안풀어도 크게 어렵지 않게 낼겁니다.
음.. 제가 잘 이해를 못해서 그런데요..
'중복조합으로 안풀어도 크게 어렵지 않게 낼겁니다. '..... 이 말씀 뜻이 뭔지 이해가 잘 안가네요.ㅎㅎ;;
그리고 수1 상하와 미통기 상하에 대한... 공부 비중과 섣불리 예측하긴 힘드시겠지만... 킬러 문제를 제외하면 작년 평가원이나 수능 정도로 나올지에 대한 포카칩님의 의견이 궁금합니다. ^^
포카책에 그 예상을 녹여만드셨나요?
4차나 3차나 별반차이없어요