[박주혁T] 함숫값의 차이는 도함수의 정적분이다.
게시글 주소: https://i9.orbi.kr/00016498559
네, 안녕하세요^^ 오랫만입니다~
오르비클래스 박주혁T 입니다. (사진의 둥이들 아빠입니다ㅋ 많이 컸네요 진짜ㅠ)
지난주에 교육청 모의고사가 있었고요,
뭐 개인적인 생각이긴 한데 수능이었다면 1컷 100점... 이 아니었을까 하는 생각이
들 정도의 시험이었습니다. (수학가형기준입니다. 나형은.. 어려웠거든요ㅠ)
오늘은 해설강의를 하다가, 이번 수학가형 교육청 모의고사는
지난해 (2018학년도지요) 6월, 9월을 제대로 반영한 문제가 있는데, 학생들이 이걸 잘 몰라서
강의를 하니까 " 엥? 처음듣는 이야기인데? " 라는 반응이 나와서
칼럼으로 써야겠다고 생각한 내용입니다.
어떤 문제를 해설하다가 그런 생각이 들었냐면요,
3월 수학가형 20번입니다.
문제는
이녀석이고,
뭐 빠른분들은 암산으로도 5번이네! 라고 할 수도 있는 문제입니다.
(물론 암산은 개인차가 있습니다)
이 문제의 해설은
------------------------------------------------------------------------
------------------------------------------------------------------------
여기까지가 교육청의 ㄱ ㄴ 보기 해설입니다.....만,
겨울에 기출문제 분석 제대로 하신분들은 이미 알고 계시죠?
ㄱ.ㄴ의 과정은 2018학년도 6월평가원 수학가형 30번과 동일한 논리구조입니다.
이미 문제가 떠오르신 분들도 계시겠지만.
안 그런분들을 위해 문제를 소환해보죠.
20180630 입니다.
안풀어보신 분들은 풀어보시는것도 좋을것 같습니다.
(해설강의 : http://class.orbi.kr/class/1182/ 의 2강 마지막에 30번해설이 있습니다)
이 문제를 해결할 때,
도함수가 우함수이고, 원함수가 (0 , f(0))의 점대칭 함수 란것은,
이 문제풀이의 기본적인 사항입니다.
그러니, 이 상황이 기출분석을 한 친구들이라면 자연스레 떠오를 것이고,
교육청 문제의 함수는 f(0)=0 인 상황이니까, ㄱ,ㄴ 이 참인것은 매우 자연스럽게 나오죠?
물론,
이녀석은 cosx 때문에 우함수가 될수 밖에 없음은 설명할 필요가 없다고 봅니다.
자, 그럼 ㄷ 보기로 넘어가보겠습니다.
문제를 다시 보죠.
함숫값을 물어보네요?
그런데 f(0)=0 이네요.
교육청 해설을 한번 볼까요? (그전에 안푼분들은 풀어보시고)
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------
아하! 그렇구나 (무릎을 탁!!)
... 이러면 좋겠는데, 꽤 많은 해설강의들이 이러저러한 skill 이 있고,
이걸 기억해야 하는구나 - 정도로 해설강의가 이루어지고 있고, 학생들도
그냥 외울거 하나 추가요! 정도로 받아들이는 분위기라서,
저는 이 참에 공부를 좀 시켜보기로 했습니다.
우선은 이 글의 제목인 ,
[함숫값의 차이는 도함수의 정적분이다.] 를 연습하는거죠.
관련 기출은 20150930 입니다.
기출분석이 잘 되어 있다면,
로 놓고 , [함숫값의 차이는 도함수의 정적분이다.] 를 이용해서
어렵지 않게 풀어냄을 알 수 있습니다.
여기서 하나를 더 소환하겠습니다.
20180930입니다.
이 문제는 잘 살펴보건대,
[평행이동]이 핵심요소임을 알 수 있습니다.
x축 방향으로 평행이동을 하더라도, 최대/최소값이 변하지 않음이 핵심이죠.
안풀어보신 분들은 풀어보시는것도 좋을것 같습니다.
(해설강의 : http://class.orbi.kr/class/1271/ 의 2강 마지막에 30번해설이 있습니다.
평행이동을로의 해설이 무엇인지 잘 모르시면 꼭 들어보세요.)
자, 예전기출로 복습을 했으니, 적용해 보겠습니다.
다시 문제로 돌아가서
ㄷ 보기로 넘어가보겠습니다.
함숫값을 물어보네요? 그런데 f(0)=0 이네요.
물론,
이녀석은 cosx 때문에 우함수가 될수 밖에 없죠.
[함숫값의 차이는 도함수의 정적분이다.] 를 적용해 보았습니다.
그런데 도함수가 우함수인데, 적분구간이 그걸 써먹을 수가 없는 녀석이네요.
그럼, 20180930에서 사용한 평행이동을 사용해 보겠습니다.
아하, cos함수가 평행이동하니 sin 함수로 자연스럽게 바뀌면서 적분기호 안의 함수가
[기함수]가 되었네요!
그럼 ㄷ 보기도 참이네요.
어떻습니까?
문제하나 풀면서 기출을 주욱 훑었네요.
이런식으로 이 문제를 접근하면, 2018학년도의 대칭성 + 평행이동을 모두 복습하고 갈 수 있는 기회가 됩니다.
3월이던 4월이던 6월이던 9월이던 다 마찬가지입니다.
모의고사를 최선을다해 치르고,
그 다음의 "피드백"
과정이 중요합니다.
명심하시고, 3,4월 학습에 정진하시길 바랍니다^^
3월 교육청 해설강의는
수학가형
http://class.orbi.kr/class/1421/
수학나형
http://class.orbi.kr/class/1420/
입니다.
ps. 올해 저도 러셀의 손우혁선생님과 모의고사 출판계획이 있습니다.
그리고 올해 제헌모 /히든카이스도 해설합니다. 출간계획에 맞추어 공지하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
화통사탐으로 연높공 합격하는 점수가 어느정도 일지 궁금함
-
제가 재수할려고 작년 1학년 1학기 3월 초에 대학교를 자퇴했습니다 재수를 망해서...
-
ㅈㄱㄴ
-
담임쌤이랑 2시간은 상담함;;
-
[영어] 노베이스(4↓)가 3월까지 끝내야 할 공부 4
안녕하세요. 노베 전문 강사 겸, 비대면 전문 강사 Good day...
-
작년에 메가패스 끊어서 국어 2등급 후반(본인은 3등급이라고 생각) 맞았습니다 올해...
-
한번 미끄러지긴했지만
-
그냥 궁금해서 물어보는거 ㅇㅇ 남자들만 투표해라
-
솔직히 대학가서 여러가지 해보면서 살고싶어서 과는 어디던 상관없는데 솔직히 공대가...
-
예를 들어 1번 241122 2번 250615 이런 식으로 원하는 기출들 구성해서...
-
✨가천대학교 한의예과 신입생을 찾습니다!✨ 가천대학교 한의예과 25학번 신입생...
-
1학기에 하루가 멀다 하고 1긱 옆 씨유에서 2시까지 퍼마심 4월 말쯤부터 모든...
-
애매하네 님들은 어떰?
-
양자학교는 좋은 곳이네요
-
쓰곤 했는데 2028부터 이러한 표현이 다시 등장할지 내심 궁금함 사실상 30년 전...
-
머리 아플 정도로 상황이 안 좋으면 차라리 몸이라도 힘들게 해서 고뇌에서 잠깐...
-
삐약삐약대 5
약뱃은 아름답다
-
여러분 여러분 여러분 10
저처럼 투투하시는분 있나여 저는 화2 생2 해요
-
내가 s면 넌 나의 m이 되줘~
-
뇨뇨체 안썼는데 뇨며들었다 뇨뇨뇨..
-
옛날부터 써보고 싶던 학습태도 관련 칼럼임. 마침 최근 냉부해도 돌아와서 그...
-
어떻게 생각하심
-
확통 평가원 기출 15
기억에 남는 어려운 문제 잇을까요. 다른 확통 문제들에 비해 확실히 어렵다 싶은 문제.
-
이 글 대상 목적은 그냥 고교 들어가거나 선택과목 체제 돌입한 오르비언들..!...
-
고전시가 공부할 때는 '시험에 이 작품이 나올지도 모르니까 열심히 암기해야지'라는...
-
전 왼손잡이 & 왼눈잡이
-
기출의 파급효과 0
기출의 파급효과 영어 독서 문학 사문 어떤지 알려주실분 계신가요? 독학으로하기에...
-
레벨 개예쁘네 4
30렙부터 갑자기 예뻐지네.. 캬 대 르 비
-
ㅅㅂㅋㅋㅋㅋ
-
Sat lsat이런거 어줍짢게 따라하는거 진짜ㅋㅋ 걔네는 그냥 적성시험으로 아득바득...
-
이거 쪽지 알림이 안 떠서 너무 늦게 읽게 되는데 다른 앱을 깔 공간이 없음뇨
-
무물보 7
고대는 수리논술로 붙음 23: 43235 24: 3212125: 32132 요즘...
-
야구 언제 하냐 2
슬슬 금단증상 온다 ㄹㅇ
-
학부모가 좋다고 더 따끔하게 혼내달라함 당황스럽다
-
이투스 살려주려 한건가…
-
네
-
알바 땜빵 문의 들어와 좋긴한데만
-
역시나 한 번 더해서 설의를 가야겠군 ㅋㅋㅋ
-
경희 건공 / 건대 화공이면 어디감?
-
한번 정리해 볼만할까요? 국어(언매) 백분위 작수 83(밀려씀) 9모 79 올수...
-
24 미적: 실력 많이 오른거같은데 1 가능한가..? -> 어림없지 개폭망 25...
-
97 있는 수능판이 더 익숙한데…
-
노래 좋네요
-
아빠 2006-7년쯤에 의전원준비할때 오르비했엇대 굉장하다 참고로 아빠 고려대공대 99학번
저도 등급컷보고 당황했네요..
그리고 이과 24번과 문과 25번이
정답률 bottom 5 안에 있다는게
전 더 충격이었네요ㅠ
단순히 구분구적법을 정적분으로 변환하는 문제도 그 안에 있었던 것 같은데요.. 정말 수능이었다면 초토화되었을 것 같아요
ㅋㅋㅋ 근데 저 문제들 분할문제랑 지수 연산문제라서 더 충격이 컸네요
흠.. 본 해설에서의 20번의 요지는 함숫값의 차이가 도함수의 정적분이라기보다는
평행이동을 함으로써 적분구간을 조작하여 기함수로 만들 수 있다는 데 있는 것 아닌가요..?
네 그것도 맞고요ㅎ
f(파이)=f(파이)-f(0)=도함수 정적분
으로의 논리전개를 연습시키려는 의도가
있습니다^^
수업 열심히 듣고있어요~! 감사합니다
천사들이네요
파이팅!
화이팅ㅎ
와.. 벌써 이래 컸어요? ㅎㅎ 진짜 가끔 사진으로 보는 입장에서는 돌아서면 쑥쑥 크는것처럼 보여요 ~~
실제로 쑥쑥 큽니다 ㅋ
명쾌한 해설 감사합니다! 덕분에 수학적 관점이 이전보다 확장된거같네요
도움이 되실거에요^^
엥 제헌모랑 힠모가 나오는게 거의 확정된건가요 ㄷㄷ
글고 따님분들 정말 많이 컸네요 기쁘시겠습니다 ㅎㅎㅎㅎ
아마도 저자분들이 이야기 한거니까?
맞지 않을까요^^
아 그렇군요! 힠모의 귀환은 너무너무 기대되네요.. 현역때 봤던 모의고사인데 드디어 ㅠㅠ..
ㅋㅋ셤장에서 문제풀때 이게시글 제목 똑같이떠올렸는데 다행이네요
잘하셨습니다^^
선생님 그 디귿보기에서 도함수식에서 도함수식이 파이/2,0 에대칭이라는 항등식에 도함수를집어넣어도 쓸만한 풀이인가요
댓글로는 무슨 이야기인지 잘 모르겠어요ㅠ
오 제목보자마자 깜짝놀랐네요 작년 10월쯤에 고민해봤던 내용이어서요ㅋㅎ
캬 역시 의대 클래스^^
제가 애먹었던 ㄷ보기를 평행이동 하나만으로 순식간에 풀어버렸네요... 후... 왜 저는 저런 생각이 안될까요?
sin과 cos은 평행이동을 통해 우함수도 기함수도 될수 있음을 알아두시고요, 다음에 유사상황이 발생한다면, 그 성질을 적용시켜보는 연습을 하시면 좋을것 같습니다^^
분명 방학때 전부 풀었던 기출문제들인데 저는 시험장에서 문제를 맞추긴했지만 ㄷ 보기는 찍어서 맞췄답니다... 이런 글을 보니까 방학때 학습을 돌아보게 되는것 같아요 좀 더 제대로 된 기출분석을 해야겠다는... 이런 종류의 글을 볼때마다 수학적 시야도 넓히고 여러모로 정말 좋은 것 같습니다. 앞으로도 종종 올려주세요~
1컷 100 동감입니다.
3월 가형 30번은 작년수능 30번 오마주ㅋ
20번 ㄷ 해설지 풀이처럼은 실전에서 잘 안떠오를듯요... 그냥 그래프로 직관적으로 접근하는게 교육청 해설지보다 더 현실적이지 않을까싶기도 하네요...
좋은 해설감사요~~~
둥이들 잘 크네요~~^^
쑥쑥 자라고 있어요^^
공부하다가 이해가 안가는점이 있어서 댓글드립니다ㅜㅜ 아직 현역생인지라 질문수준이 낮은점 양해부탁드려요.
ㄷ보기를 평행이동하면 함수가 기함수가 된다고하셨는데 sin (ㅠsinx) 가 기함수라고 생각할수있죠?
기함수 합성 기함수는 기함수인가요?
x 대신 -x 넣어서 결과 확인해보세요~
질문해도될까요?? f합성g 에서 둘중에 하나라도 우함수면 전체가 우함수인가요? 아니면 g가 우함수일때 그런가요?
각 경우에도 모두 -x넣어서 확인해 보세요^^
f나 g둘중하나만이라더 우함수며누전체가 우함수내요
아 그리고 올클리어 데이랑 포카칩 다운받았어요 근데 etk랑 wp리뉴얼은 해설이 원래 없나요? 오르비패스 없어서 해설강의는 못들을것같아서요... 자료 베푸셨는데 귀찮게 해서 죄송합니다...
네 그들은 해설지가 없고 강의만 있습니다ㅠ
넵 알겠습니다 감사합니다
리킬마나 wp는 강의도 못듣던데 ㅠㅠㅠㅠ
올해 뉴버전으로 올라와서요~
문제 제공하신분들중에 작년 한정으로 허락하신분들도 있고요ㅠ 미안해요ㅜ
아니에요! ㅎ 이번년도꺼 리킬마들을까봐요 ㅎㅎ
원래 적분문제는 걍 기계식으로, 대수적으로, 단편적으로 왔다갔다 하다 걍 포기해버리는 수알못이었다가 최근에 역함수, 대칭함수의 적분과 변환등 다양한것을 접해보며 미적문제를 바라보는 새로운 눈을 키워가는 중인데 이번 3월 강의를 보며 매우 도움이 된 것 같습니다. 기존에 완벽히 정리하진 못하고 머릿속에 떠도는 것들이 한번에 정리된 느낌이네요.
따른 모든 해설강의와 유료 강의도 들어보고싶네요 ㅎㅎㅎ 감사합니다!
f'(x)가 (pi/2,0) 점대칭이라는 걸 이용해서
f (x)가 x=pi/2 선대칭임을 알아내면
ㄷ은 f (0)=f (pi)이므로 참입니다. 위에 어떤 학생이 이렇게 풀어도 되냐고 질문한 것 같네요.