[박주혁&손우혁 칼럼] 매개변수, 어디까지 공부해봤니?
게시글 주소: https://i9.orbi.kr/00016961187
이번에도 기다리시던 손우혁샘의 칼럼입니다.
이번주제는 "매개변수" 네요^^
다음주에 저는, 문/이과 모두 볼수 있는 칼럼을 준비중입니다~
문과분들은 다음주에 꼭 읽어주세요^^
시작합니다~
------------------------------------------
반갑습니다. 손우혁입니다.
두 번째로 인사 드리는군요.
박주혁 선생님과 제가 모의고사를 제작하기로 마음먹었을 때,
두 가지 특징이 잘 드러난 모의고사가 되었으면 한다는 얘기를 나눈 적이 있습니다.
첫 번째,
단지 킬러문항만 신경쓴 모의고사가 되지말자!
두 번째,
풀고 나면 공부가 된다는 느낌을 받게 하자!
였는데, 4월 Rise 공개이후에 많은 학생들이 비슷한 반응을 보여주어서
힘을 많이 얻었습니다.
얻은 에너지를 2회에도 쏟아 부을 예정이니 많은 기대 부탁 드립니다.
제가 두 번째로 잡은 주제는 6월 평가원의 범위이기도 한 평면곡선의 접선,
그 중에서도 매개변수 곡선에 관한 이야기입니다.
매개변수 곡선을 한 마디로 표현하자면,
프로듀스 101의 장근석이 한 말이 떠오르는 군요.
‘
긁지 않은 복권이다.’
그동안 평가원과 수능 시험의 미적분 고난도 문항에
사용된 함수들을 살펴봅시다.
개정 교육과정 이전에 가장 많이 등장했던 형태가
지수로그 함수와 다항함수의 곱, 그리고 절댓값을 활용한 형태였죠.
그러다가 개정교육과정으로 넘어온 최근 2년간은 기존의 유형에서
탈피하려는 노력이 많이 보였습니다.
크게 세 가지 변화가 눈에 띄었는데
첫 번째, 합성함수의 적극적 사용
두 번째, 수열 접목
세 번째, 미정계수의 범위에 따른 함수 분할
이런 변화로 인해 계산은 더욱 복잡해지고 따져 주어야
할 것들이 많다보니 내공이 부족한 학생들을 손도 못대는
난이도가 되어버린 것이죠.
그렇다면 위의 세 가지 특징이 앞으로도 유지가 될 것인가?
그건 너무 안일한 생각이 아닌가 합니다.
예전과 달리 킬러문항을 적극적으로 대비하면 고득점을 할 수 있는,
요즘 수능 시험은 그 자체가 자충수가 되어 오히려 공부하기 편한,
최소한 무엇을 공부하면 된다는 것이 정해진 시험이 되어버렸죠.
이러한 사실을 평가원에서도 충분히 인지하고 있을 것이기 때문에,
앞으로의 미적분 21, 30 번의 시험 경향은 한마디로
이렇게 요약할 수 있을 것입니다.
" 무엇을 대비하든 대비하지 않은 것이 나올 것이다. "
아주 섬세하게 들여다 보았을 때, 부분적으로 사용된 아이디어는
중복사용이 될 지라도 처음에 문제를 보았을 때의 느낌 만큼은 완전히
새로운 유형의 문제가 나올 가능성이 높습니다.
그런 느낌을 주기 위해선 수식이 정리되는 패턴이나
기하적인 관찰의 포인트에 변화를 주는 것이 아니고
최초에 제시된 함수를 새롭게 출제할 가능성이 높다고 봅니다.
(물론, 개인적인 생각임을 밝힙니다)
자, 이제 매개변수 곡선으로 돌아와 보죠
기하와 벡터 고목에 들어와 있긴 하지만 ‘미적분 II’에
실려 있어도 이상할 것이 없는 단원이기도 하죠.
매개변수 곡선의 정체성은 뭘까요?
양함수로는 쉽게 표현되지 않는 곡선을 표현하는 도구
이것이 매개변수 곡선의 정체성입니다.
느낌이 오나요?
양함수와는 전혀 다른 형태의 곡선을 만들어내는
도구이기 때문에 제가 앞서 말한 새로운 느낌의 문제를
만들기에 아주적합한 재료가 되는 것이죠.
그렇다고 해서 대학교때 배우게 되는 아르키메데스 와선 같은 것이
나올 가능성은 높아 보이지 않구요,
도함수를 통해 분석할 수 있을 정도를 출제할 가능성은
충분히 높아 보입니다.
자, 그럼 매개변수 곡선을 말 그대로 곡선을 그리는 도구로서 인식했을 때,
주의 해야할 점을 정리해봅시다.
우선 두 가지 간단한 예를 통해 살펴볼까요.
그리고, 각각의 도함수는
가 됩니다.
단순히 부호변화만 관찰해 보자면
위쪽 함수는 t가 -1일 때 극대, t가 1일 때 극소가
되는 것처럼 보입니다.
두 번째 함수는 순서대로 t가 0,1,2일 때, 극소, 극대, 극소가
되는 것처럼 보입니다. 물론 t가 1일 때는 미분 불가능한 첨점으로서
극대가 되는 것이구요.
그런데 실제로 두 곡선을 xy평면위에 나타내보면
첫 번째 곡선만 우리가 예상한 형태가 되고 두 번째 곡선은
예상과는 전혀 다른 형태가 됩니다.
차이점이 무엇일까요?
매.개.변.수.
라는 표현에서 알 수 있지만 주로 사용되는 t라는 문자는
이 곡선의 주인공이 아닙니다. t를 매개로 하여 결국 xy평면에
그래프를 그리는 것이기 때문에 도함수의 부호변화, 극대, 극소의 위치
같은 것들은 x중심으로 분석되어야 합니다.
첫 번째 곡선은 t와 x의 증가 방향이 일치합니다.
그런데 두 번째 함수는 그렇지 않습니다.
상세히 살펴보지 않고 극대, 극소인 부분만 보더라도
첫 번째 곡선은 t=-1, 1일 때 x=-2, 2 로서 순서가 일치합니다.
극대, 극소 순으로 xy평면에 나타나죠.
반면, 두 번째 곡선은 t=0, 1, 2 일 때, x=0, -1, 0 이 됩니다.
심지어 값이 중복되는 군요. 그래서 이 경우 xy평면에 그래프를
그리면 t의 증가방향과 x의 증가 방향이 일치하지 않아서 전혀
다른 형태의 그래프가 나오는 것입니다.
그렇다면 어떻게 대비를 해야 하느냐.
두 번째와 같은 곡선은 단순계산 문제보다는 ㄱ,ㄴ,ㄷ 문제로 출제될
가능성이 높습니다. 시험장에서 처음보고 이러한 특징을 발견하기란
쉽지 않기 때문에 평소에 한 번이라도 이러한 생각을 해본 경험이
중요한 것이죠.
이 글을 읽고 있는 여러분은 이미 알게 되었기 때문에 이
제 신경쓰지 않아도 될 겁니다.
그리고 매개변수 곡선을 보았을 때 습관적으로 t에 관한 함수로
표현된 x가 증가함수인지 확인해보기만 하면 됩니다.
만약 증가함수라면 개형에 의존하여 풀이를 할 수 있는 것이고,
아니라면 수식에 의존하여 풀어나가면 되는 것이죠.
자, 이제 또다른 주제로 넘어가 볼까요.
x가 증가함수여서 개형을 잡는 것이 가능한 상태에서도 양함수에서는
쉽게 볼 수 없는 특징을 하나 더 가지고 있습니다.
그래프 개형을 마무리 할 때, 도함수, 이계도함수를 충분히 분석했다
하더라도 정의역의 경계값에 대한 극한계산을 통해 끝부분이 수렴하는지
발산하는지를 체크해보아야 하죠.
평가원에서 좋아하는 y=t 라는 x축과 평행한 직선이 곡선과 만나는 점을
분석해야 하는 문제같은 것을 풀 때 수렴발산 여부는 매우 중요한 역할을 합니다.
그런데 2017년 6월 평가원 16번 문제 기억하나요?
y=x+t 가 사용되었는데 이 경우 기울기가 1인 점근선의 존재 유무가
문제에 같은 느낌으로 영향을 끼치게 됩니다.
위의 문제는 그러한 점근선이 존재하지 않지만 조금씩 변형되고
어려워지는 평가원 문제의 특성상 앞으로는 출제될 가능성이 높은 것이죠.
양함수로 이러한 곡선을 만드는 것은 형태가 너무 노골적입니다.
과 같이
y=x 뒤에 수렴하는 형태의 함수가 더해진 경우,
기울기가 1인 직선이 만들어집니다.
이렇게 출제할 경우 새롭지만 눈치채기 쉽기 때문에
고난도 문제로 출제하기엔 적합하지 않죠.
그런데 매개변수로 출제할 경우, 앞에서 사용한 함수를 다시 한 번 살펴보죠.
눈치 채셨나요?
도함수가 항상 1보다 작은 값일 뿐만 아니라 1로 수렴합니다.
삼차곡선과 유사하게 생겼을 것 같지만 끝부분이 쌍곡선처럼 발산은
하되 접선의 기울기가 1을 넘지못하는 형태가 되는 것이죠.
정확하게 양쪽 끝부분의 점근선의 방정식을 구하는 것은 힘들지만
기울기가 1을 넘는 직선과 두 번 만날 수 없다는 것은 알 수 있습니다.
새롭지 않은가요?
아주 복잡하진 않지만 관찰력이 매우 뛰어나야 발견할 수 있는
사실이기 때문에 고난도 문제에 적합한 함수로 사용하고 이를
이용한 문제를 출제하기에 매우 적합한 형태의 곡선입니다.
그렇다면 어떻게 대비할 것인가?
역시나 여러분은 이 칼럼을 읽고 있으니, 이미 대비가 된거죠.
매개변수는 이러한 특징을 가지고 있다는 사실을 인지하고
개형을 마무리 할 때, 도함수의 끝부분에 대한 극한을 살펴보기만 하면 됩니다.
지금까지 매개변수곡선의 그래프를 활용한 문제가 출제되었을 때,
주의해야할 점 두 가지를 살펴보았습니다.
우리가 해야 할 것은 이제 두 가지입니다.
위의 내용을 숙지 할 것,
평가원에서 이 글을 보지 않길 기도하는 것^^
예측 못한 유형을 내고 싶어 할 것이니까요
6평이 어느덧 코앞에 다가왔네요.
이 시기엔 지치지 않는 것도 중요한 것 같습니다.
놀고 싶은 마음 눌러 담는 것도 중요하구요.
여러분. 여러분 가정의 평화는 여러분 손에 달려있습니다.
부디 6월 평가원 대비 잘하여 가정의 평화를 유지하도록 합시다.
그럼 저는 다음에 더 알차고 유용한 주제로 찾아오도록 할게요. 수고하세요~
---------------------------------------------------------------
도움이 많이 되셨기를 바랍니다^^
Rise 5월 예비시행은 다음주 제 칼럼과 함께 공지됩니다~
화이팅하세요!!!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
귀엽
-
왜냐면 이제후루부터 기다림이 86400000 밀리초가 지날 때마다 대가리를 존나...
-
매체 43번 큐알 찍어보세요..ㅜ
-
아무것도 아닌가
-
글 다 튕기는데
-
수능 끝나고 단과가서 보면 좀 머쓱할듯ㅋㅋ
-
미친 수탐퍼거들 빼고는 다 틀리는 문제로 내면 좋겠다 괜히 어중간한거 내서 나...
-
시즌3 이후 최초로 50 근데 19번 찍맞 역시 어렵군
-
작수 전날 실모 국어 98 수학 57 작수 점수 국어 83 수학 80
-
5000부 판매돌파 지구과학 30분의기적 파이널 총정리집을 소개합니다. (현재...
-
올해는 진짜 0
불수능이다 뭐다 이런저런얘기 들으면 시험장가서 열심히한만큼 못할까봐 ㄹㅇ 걱정이네요
-
진짜 철회한다.
-
27까진 걍 쉽게내줘 ㅋㅋㅋㅋㅋㅋㅋ
-
평가원이 난이도 못 맞추니까 그러눈 게 아니냐고 다 평이한 거 원하겠지 근데 ㅅㅂ...
-
나는 어떤 종류의 과일이든 상관 없이 잘 먹는다. 이 문장에서 '이'는 접사이고,...
-
걍 나처럼 시원하게 딱 내가 겨우 100점 맞을 난이도로 나와 달라고 빌면 되는데
-
좋겠다......
-
떴냐? 2
떴다. 어차피 완결은 23일이니 논술 끝나고 몰아봐야지
-
76 78 2컷…. ㅅㅂ 독서왤케어려움
-
그런 의미에서 저는 적당한 정도의 약불을 바라겠습니다
-
예전에 이어도라고 쉽진 않은 96수능 작품 있었는데 0
이번에 풀어보니까 다 맞았네 작년엔 엄청 틀렸는데
-
서울대를 지균대 기균대라고 까네
-
수능날도 안먹을거임?
-
독서 문학 언매 뭘 먼저 풀어도 맨 먼저 푼게 제일 많이 틀림 ㅗ
-
물국어 기원 2
워터파크 개장 기원
-
기하 282930 그대로 50분동안 못 풀고 80점 입갤 뭐지 진짜 하 자살마렵다
-
이멀전시 1
한지 노베인데 하루 8시간씩 4일하면 3컷가능한가요 교재는 다있습니다
-
맛있게 냠냠
-
감사합니다
-
마 민저이 니는 양산의 딸 아이가
-
불수능 원하는거 욕하는 애들은 원래 3등급 받아야하는 애들이랑 같은 취급받는게...
-
언확영어생윤으로 맞추려고하고 6모 4434 7모 5423 9모 3523 10모...
-
아 쪽팔려 3
인생 못 살겠네.... 휴릅합니다 감사합니다
-
사문 쉬운 퀴즈 6
특정지역의 이익만을 추구해도 사회운동에 해당할 수 잇다 ox
-
과탐 ebs 2
지구나 생명이나 수능장에서 연계 체감 거의 안 되죠?
-
그냥 일찍 자야겠네요
-
독서 다 맞아서 좋았다가 문학 2개 문법 1개... 더 차분하게 풀고 문법 지금...
-
22211 1
어느정도 가나요? 백분위에따라 많이 다를까요
-
김승리 찌라시 5
이거도 찌라시임? 아니면 승리t 감 같은건가
-
탐구 1개 망하는 보험용으로 고대 경영 논술 썼는데 1211X로 최저 맞춘다 쳤을...
-
메가패스랑 교재값 더프 합치면 그정도 6월부터 시작함
-
6평독서는 22독서 24독서사이에서 어디쯤난이도려냐
-
n제 보다가 교사경이 공통미적 합쳐서 n제 10권 분량인데 7만원대인건 ㅈㄴ...
-
현재 고2이고 듣고 싶은데 이미 수1 수2 다른 강사 실전개념 들어버려서 시간낭비가...
-
ㅅㅂ 분해자로 알고 있었네
-
도서관 앞자리 야호 모의고사 피뎊 뽑아서 풀다가 3페이지에서 돌발 폰질중 12
뭐냐...?
-
풀기싫다
-
지금시키몀 수능끝나고 받겠는데
-
큰일났다 좆됐다 오늘 11투스봤는데 진ㅋ자 좃됨을 감지함 물수능 나오면 난 진짜 심연으로 처박힐듯
매개변수 살짝만 꼬면 많이 틀릴거 같네요
ㅎㅅㅇ 모의고사에 실려있는 문제 보고 느꼈었는데
네 여기부분 음함수 미분과 함께 대표적인 킬러파트가 될 수 있는 부분입니다^^
제가 곧 좀 더 상세한 예를 가지고 캐스트를 하나찍을 예정입니다~ 촬영후 알려드릴게요~ 손우혁t
레벨 70 언제되심 ㅠㅠ
곧 보실수 있지 않을까요?^^
뭔말이지..?
어렵나요?ㅠ
1. 매개변수 t에 대해 나타낸 일반적인 함수 f(x,y)의 그래프 개형을 어떻게 알 수 있는지요? 극댓값과 극솟값은 알 수 있겠으나, 일반적인 매개변수를 이용한 함수의 개형은 추정하기 어려워보입니다.
2. 마지막에 올려놓은 식에서 도함수가 1보다 항상 작은 상태에서 1로 수렴한다는 것은 어떻게 알 수 있는가요 ?
3t^2-3<3t^2+1
아..그렇군요 1번에 대한 답도 알 수 있으까요
사실 도함수를 통해 매개변수곡선을 그린다는 것은 그야말로 대략적인 개형을 잡는 것으로 수학적인 의미보다는 수능에서 출제할만한 내용이기 때문에 공부해둔다고 생각하세요~
일반적인 추정은 어려워보인다는 것이 제 글의 핵심이기도해요 제약적인 상황에서만 개형을 잡을 수 있으니까요
본문에서 t=-1,0,1일 때 극대극소라고 단정하는 게 위험할 수 있다고 말씀하셨는데
그 값만 대략적으로 구할 수 있을 뿐, 극값이라는 것은 개형을 알아야 하는 것 아닌가요?
이계도함수를 구할 수도 없는 노릇이구요.
그쵸 그래서 x가 증가함수임을 확인하는것이 필요한거구요
이해가...
어려운가 보네요ㅜ
미2랑 기벡이랑 섞일수있나요? 과목간의 융합이랄까...
사실 작년 수능 21번을 음함수 미분으로 수월하게 풀어버린 친구들한테는 미적2와 기벡 파트의 미분은 나누어서 생각할 부분이 아닌거죠~
와 생각해보지 못했던 부분이네요.. 좋은 칼럼 감사합니다. 그동안 매개변수를 너무 쉽게 생각했었네요.
도움이 되셨다니 다행이네요^^
저도 감사해요~
1. 매개변수가 xy평면의 그래프를 나타내지 않는다. 대략적인 개형일 뿐.
2. 따라서 x와 t가 증가관계에 있는지 확인한다.
3. t를 통한 도함수의 극한값을 생각한다.
사실 2번에서 증가관계냐 감소관계냐 이것도
상당히 중요하고요^^
Etk에서 다룹니다ㅎㅎ
칼럼 보면서 평가원에서 이걸 보면 안될텐데... 생각했는데 역시나 적으셨네요ㅎㅎ
좋은칼럼 추천합니다.^^
뭐 저희들이야 듣보니까요^^
평가원 걱정은 뭐ㅎㅎ
개인적으로 궁금한건데요... 예시로 드신 두번째 매개변수 식을 함수라 부를 수 있나요? x=t^3-2t y=t^3-3t^2 이거요!
매개변수 곡선을 함수로 인식할땐 정의역은 실수 t 공역은 (x,y)평면위의 점 으로 인식합니다
고교교과과정을 넘기때문에 보통은 매개변수로 만들어지는 곡선이라고 하지요
음함수곡선도 마찬가지이구요