6평 수 가 18,27,28번 살짝 다른 관점
게시글 주소: https://i9.orbi.kr/00023042522
6평 치고나서 학교친구들의 보편적인 풀이법과 다른 거 같은 것들 소개하려 합니다.
사실 여러분들이 보기에 "엥 당연히 생각나는 거 아냐?" 하실 수도 있습니다.
먼저 18번
부채꼴 모양이 직선위로 움직인다고 생각하면 쉽겠죠...?
27번
이건 아마 많은 분들이 생각하셨을듯 합니다.
28번
제일 야매같은 풀이입니다. 0극한 상황을 직관적(?)으로 생각해서 삼각함수가 아니라 간단한 다항함수로 쉽게 나타나는 것인데요. 생각보다 많은 평가원 문제가 (70~90프로?) 이런 방식으로 해결 가능합니다만, 가끔 그냥 삼각함수로 나타내는 게 쉬운 모양이 생기기에 정석풀이법을 익혀야 합니다.
부족한 글 봐주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올해 150일 이상 4시간씩 탐구(생윤사문)에 박았는데 32떠서 좌절감을 맛보고...
-
창팝 밴드 커버 준비했는데 놀러와주시면 감사드리겠습니다 ㅋㅋㅋ 서울특별시 서대문구...
-
.
-
자이스토리 3
자이스토리 고3 수학 사려는데 수능 년도 바뀔 때 마다 문제 차이가 큰가요..?
-
왜 31만원이 21만원이 되었는지 설명해볼래
-
자니? 13
-
여성 인권운동가 아이민 1334714에 대해 araboza 5
우선 해당 아이민을 댓글을 기준으로 검색해보도록 하자 놀랍게도 여대,페미 관련...
-
경희대 논술 0
수리 논술인데 2-1에서 범위를 0<a<2/5까지라해서 틀리고 3-1에서 C값을...
-
수능은 끝났는데 3
왜 내 불면증은 안끝날까
-
내가 생각보다 잘하는거구나라는 생각이듦
-
잠을 못자 ㅅㅂ
-
강기원 김현우 장재원 박종민 안가람 이동준 ㅅㅂ 커뮤니티에서 후기들 알아보고있긴한데...
-
어그로 ㅈㅅ 87 74 2 93 93 동국대 철학괴 ㄱㄴ?
-
투과목잘알님들아 5
지2어떰?? 생2처럼 운이 크게작용함? 아님 정직하게실력만큼나옴?
-
얘네 지금 볼 필요 없음 그냥 놀아요
-
진학사? 2
다들 진학사 결제 하셨나요…? 아니면 다른 거 쓰시나용 요즘 걱정돼서 잠이 안 옴 ㅎ….
-
전날까지도 자꾸 실모에서 개념문제 하나씩 나가길래 수능날 실수하면 죽겠다는 마인드로...
-
오르비 땅따먹기 6
특정 검색어 도배 미코토 검색하면 내 글이 50퍼가 넘는다 흐흐흐
-
과탐과목 2
물원생투했는데 바꿀까요 그대로갈까요
-
걍 닉네임 안뜨면 안됨뇨? 왜케 거슬리지
-
서강대교 성수대교 한강대교
-
마렵네 :)
-
질병분류체계에 정신병으로 한국페미 집어넣어야한다 반사회적 인격장애와 경계선지능장애가...
-
똥줄타실것같음
-
이과고 연대 활우 성대 과학인재 중대 탐구형인재 썼는데 연대만 1차 붙어서 면접...
-
글 리젠이 없네 0
흑흑
-
미코토 이쁨 3
-
마히루 이쁨 1
-
타이탄 이쁨 4
-
걍 구라일 확률이 매우 높음뇨 커뮤에 치대 떡락한다 의대는 신이다 도배하고 다니던...
-
루비 예쁨! 7
-
종강언제함 5
ㄹㅇ
-
현기증인가 4
물에 한시간정도 들가 있었더니 살짝 어지러움
-
엄청 불안하네 갑자기 영어 1 아니면 다 망하는건데
-
제가 고1 때 자퇴해서 고2 때 첫 수능 보고 고3 (올해) 재수인데 사실 내년에...
-
성심당 애니플러스 애니세카이
-
부시맨 브레드 나오면 소스 한개만 나오니까 나머지 두 종류도 꼭 같이 달라고 하셈요...
-
팩트는 ㅄ이 맞다는거임 10
언냐 뭘 부정하고 있어
-
어떻게 대해야할지 잘 모르겠음.. 특히 그 사람과 다른 사람들 같이 있을때 스스로...
-
컴공 생각하고 있었는데 점점 ai발전하고 이미 기술자들 많은거 같은데 지금이라도...
-
안녕하세요. 처음으로 글 써봅니다. 일단 전 광역시중 하나에 거주하는 남학생입니다....
-
어케한거냐면 진짜 말그대로 하루종일 아무것도 안먹음 아이스아메리카노나 제로 음료는...
-
이게오르비지 ㅋㅋ
-
나랑 키배 잘뜨다가 어디갓어
-
상향으로 한장 쓴다면 고려대 철학과, 연세대 신학과 중 어디가 그나마 가능성 높아보이시나요..??
-
6평에도 언매 다 맞았었는데 시간도 많이 안쓰고 수능날 가니까 비가 내리던데 공부는...
-
작년 생명 엣지 1
엣지는 크게 안달라지나여? 살까해서..
28번 같은 방법으로 작년 수능 18번 풀면 놀라운 결과가 나오죠...
5초컷...
저 궁금한게 있는데요 , m>n 확률 이랑 m<n 확률이 왜 같은건가요?
m이 먼저뽑는건데 확률 서로 달라지지 않나요??
총 경우의 수로 생각하면 m과n의 나올 수 있는 경우의 수가 대칭적으로 분포함을 알 수 있고,
뽑은 경우를 제3자가 결과만 봤을 땐 각 수들을 랜덤으로 배열하는 것과 같기 때문에 둘 확률은 같다고 추론할 수 있습니다.
아 그리구 28번 풀이도 이해가 안가요
s1 s2 넓이 어떻게 구하신거에요??
세타가 0으로 가는 극한의 상황에서 각각의 도형들을 부채꼴,직각삼각형,사다리꼴로 근사시켜서 부채꼴의 호의 길이공식을 이용해 각각의 변을 간단히 나타내고 넓이를 구하는 겁니다! 사용하는 역량에 따라 아주 일부분의 문제만 적용시킬수 있거나 거의 모든 문제를 적용시켜 쉽게 풀 수 있고, 극한의 상황을 해석하는 능력을 기르면 정석풀이에서 막혀도 부분적으로 활용할 수 있기에 전 고2내내 이리 풀다가 고3 들어와서 정석풀이법을 익히고 있습니다. 사실 게을러서 편법만 쓴 거지만...
님이 말씀하신 " 세타가 0으로 가는 극한의 상황에서 각각의 도형들을 부채꼴,직각삼각형,사다리꼴로 근사시켜서 부채꼴의 호의 길이공식을 이용해 각각의 변을 간단히 나타내고 넓이를 구하는 겁니다" 이것은 이해가 가는데요
s1 s2 넓이를 구하기 위해서 쓰신 식이 이해가안갑니다 .. 그러니까 s1 s2 넓이를 어떻게 구하나요? 부채꼴도 아니고 아무것도 아닌 도형인데 어떻게 넓이룰 구하신건지 모르겠습니다
S1은 사다리꼴 S2는 직사각형으로 근사시킬 수 있습니다 전자의 경우 위 이미지를 보시면 아실 수 있을테고 후자는 QB와 RB의 곱으로 넓이을 나타낼수 있는데 QB를 나타낼 순 있으나 구조상 복잡하니 극한시 0으로 간다는 점을 이용하면 이 두 변과의 곱은 세타가 영으로 갈때 0으로 수렴하는 세타 이차식이 나옴을 알 수 있습니다. 여기에 세타를 나누어도 0으로 가기에 s1의 값만 구하면 되는 겁니다.
친절한 답변 감사합니당~~