부정방정식 질문입니다.
게시글 주소: https://i9.orbi.kr/00028363375
문제)두 정수 a, b에 대하여 x에 대한 이차식 x^2+(3a+1)x+2a^2-b^2이 완전제곱식이 되도록 하는 a, b의 순서쌍 (a,b)의 개수는?
-시발점 수학(상)
저는 이 문제를 풀때, 완전제곱식이 되려면 '2a^2-b^2'이 일차항의 계수의 반의 제곱이 되어야 한다는 성질을 이용해서 풀었습니다.
현우진 선생님께서는 위의 이차식이 완전제곱식이라면 ( )^2 형태이므로 ( )^2=0이라고 치면, 중근을 가질거니까 '판별식=0' 이라고 두고 푸셨습니다.
현우진 선생님의 풀이가 이해가 조금 안되ㅅ qna로도 질문드려봤지만 돌아온 답변은 '가정일뿐이다'라는 것이였습니다.
제가 궁금한 점은, 어떻게 =0이라고 가정하고 풀 수 있는지 입니다.
혼자서 이걸 이해해보려고 함수로 생각해봤습니다. y=위의 이차식 꼴의 이차함수를 말이죠.
그리고, 이차함수의 함숫값이 0인 경우를 생각해보니까, 현우진 선생님 풀이대로 풀어도 문제가 없다고 느껴집니다만, 이차함수가 x축과 만나지 않을 때도 있기 때문에 헷갈립니다...
명확하게 설명해주실 분 계신가요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
정치 이야기- 3번 뽑은 30대 초반 아재 생각 내가 이해하지 못하는 사람에 대해...
-
주 52시간이며, 최저시급 폐지며..이런저런 이유로 왜 2번 뽑앗냐고 심지어...
-
표차이 많이 나는거 아님..?ㅠㅠ
-
현재 개표 근황 3
1.3% 초박빙
-
Re:100 고등학교 세계문제와 미래사회 교육과정에도 나오는 내용임 근데 아직도...
-
투표권이 없음으로 음슴체를 쓰겠음. 우선, 기초과학 분야의 연구환경을 개선해야...
-
모니카~
-
우리 모두 역사의 한 페이지를 우리의 손으로 장식하고 있는 겁니다 우리들 모두가 살아있는 역사입니다
-
투표에만 정신팔려서 오늘 결정되는지는 몰랐네ㅋㅋㅋㅋㅋ 워낙 겨울대선에 익숙해져 있다보니...
-
각종 사태도 그렇고, 지지자들이 폭주하는걸 사실상 방조하고 있다는 점이 말 제일...
-
수시를 줄이지만, 정시가 느는 건 아니다? [사실] 12
http://news.chosun.com/site/data/html_dir/2017/...
-
3->4
-
선택할 후보가 없다는 말이 이해하지만, 완벽한 후보를 바라니까 그런 것 같아요....
-
나오는 줄 알고 깜놀
-
좌우를 넘나드시는 장인어른 역시 대인배
-
10만 서명운동 전개 오르비 회원들 교육부 앞, 각 주요 정당 앞에서 기자회견 후...
-
네이버검색해도 블로그 같은곳에 자기가 지지하는 사람들 장점만부각시켜놓은거 뿐인데...
-
더 볼 필요가 없네요... 휴..
-
투표권 있어도 투표하지'않은'사람은 앞으로 정부정책에 반대하지 마세오. 1
그럴 자격 없습니다.
판별식을 쓰는 것은 방정식이라고 가정한 다음에 계산하는 거고요, 그래프를 이용해서 함수로 나타내는 것 역시 좌표평면상에서 y=0 (다른 말로 x축)과의 교점이 하나만 (실근은 2개, 서로 다른 실근은 1개(일명 중근)) 나오도록 만드는 겁니다. 둘 다 일종의 가정(if)입니다... 잘못 푼 것은 아니고요...
님이 접근한 이 식이 완전제곱식이 되려면 2차에서 1차항 계수의 절반의 제곱이 상수항의 제곱이 되는 형태로 푸는 것은 가정없이 가장 authentic하게 접근한 겁니다... 역시 이 풀이만 맞는 것도 아니고요...
수학은 관점에 따라서 자유롭게 변신할 수 있어야 합니다. 단, 그 변신이 논리적으로 잘못된 것이 없다는 전제 하에서요...
그런데 위의 이차식이 0이라는 값을 가질 수 없다면, 가정이 정당하지 않은 것 아닌가요?
가정이 정당하지 않은게 아니고요 완전제곱형태가 불가능하다는 결론이 나오겠죠... 실수체에서요...
방정식 꼴에서 완전제곱형태 말씀하시는 거죠?
( )^2=0 이 꼴이요.
예... 미지수가 포함된 방정식이라면 복소수체에서 따질 때에는 무조건 2차방정식의 근 2개는 존재하지만 실수체에서만 따지는 경우라면 있을수도 있고 없을수도 있습니다...
이렇게 가정해서 푸는걸 처음봐서 그런지... 익숙하지도 않고 별로 와닿지가 않네요ㅜ
아직도 이해가 안되요
수학 기법상 가장 광범위한게 행렬하고 방정식입니다... 식에서 성립하는 거면 방정식에서도 성립합니다. 방정식에서 성립한다고 식에서 성립하는 것은 아니고요... 이 말인즉슨 식에서 성립안하는 것처럼 보여도 방정식으로 놓고 보면 성립하는 경우도 존재합니다...
저 위에서 0을 가질 수 없을때는 완전제곱형태가 될 수 없다고 말씀하셨는데, 그렇다면 판별식=0을 활용할 수 없는 것이 아닌지요?
x^2 + 2ax + a^2-2a 이런 식이 있다고 하고 이게 완전제곱식이 되려면
1차항의 계수 절반의 제곱인 a^2 = a^2-2a이면 되겠죠... 그럼 a=0이 나오고 본식은 그냥 x^2이니까 성립합니다. 그런데 a가 0이 아니면 본식을 완전제곱식으로 만드는 a는 존재하지 않는거죠... 즉, 방정식으로 놓고 판별식을 쓰나 그냥 완전제곱꼴 변형을 하나 차이가 없다는 겁니다...
이제서야 생각이 났는데, 완전제곱식은 무조건 0이라는 값을 가지게 되있네요!
예를 들어 (x-a)^2이라는 식은 x=a일때 0을 가지듯이 말이에요.