부정방정식 질문입니다.
게시글 주소: https://i9.orbi.kr/00028363375
문제)두 정수 a, b에 대하여 x에 대한 이차식 x^2+(3a+1)x+2a^2-b^2이 완전제곱식이 되도록 하는 a, b의 순서쌍 (a,b)의 개수는?
-시발점 수학(상)
저는 이 문제를 풀때, 완전제곱식이 되려면 '2a^2-b^2'이 일차항의 계수의 반의 제곱이 되어야 한다는 성질을 이용해서 풀었습니다.
현우진 선생님께서는 위의 이차식이 완전제곱식이라면 ( )^2 형태이므로 ( )^2=0이라고 치면, 중근을 가질거니까 '판별식=0' 이라고 두고 푸셨습니다.
현우진 선생님의 풀이가 이해가 조금 안되ㅅ qna로도 질문드려봤지만 돌아온 답변은 '가정일뿐이다'라는 것이였습니다.
제가 궁금한 점은, 어떻게 =0이라고 가정하고 풀 수 있는지 입니다.
혼자서 이걸 이해해보려고 함수로 생각해봤습니다. y=위의 이차식 꼴의 이차함수를 말이죠.
그리고, 이차함수의 함숫값이 0인 경우를 생각해보니까, 현우진 선생님 풀이대로 풀어도 문제가 없다고 느껴집니다만, 이차함수가 x축과 만나지 않을 때도 있기 때문에 헷갈립니다...
명확하게 설명해주실 분 계신가요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사유: 기어를 3단으로 해놓고 운행해서 엔진정지 4번 연속으로 일어남 시뮬레이션이...
-
카톡 운영정책이 너무 싫어서 카톡 탈퇴해버림.. 카톡계정자체가 없음 메세지로도...
-
내 오랜 꿈이다... 어쩌다가 이렇게 됐는지
-
3박4일이라는데 이게 맞나요... 부모님도 이거땜에 싸우던데 하...
-
사라질 직종이 어떤 것일까는 정확히 예측 불가능한거임?
-
복지부 교육부 멍청한놈들 때문에 이게 뭔 혼란이람
-
다이어트중이라 밥 남김 이게 남긴거냐는 말은 ㄴㄴㄴㄴ
-
ㅇㅂㄱ 0
으아아
-
표지의 상징은 희망입니다. ㅎㅎ 실제책 내지는 맛보기와 달리 표지와 비슷한 색으로...
-
얘들아 @@이 야한게임한대~
-
에 대해서 1년전쯤 학부생수준에서 자필로 규명해놓았던 자료를 공유합니다 ㅇㅇ...
-
성대가 조발이 가능한 이유와 다른 학교가 못하는 이유 0
보통 조기발표 하는 학교는 정시에서 특별전형(농어촌, 기회균등, 외국인, 장애인...
-
아가기상 9
우웅
-
세계관 재정립 4
공허참에 의하면 전건이 거짓이면 명제가 참이다 p->q 에서 p가 거짓이면...
-
피램 화작 보는데 글씨가 많이 작긴하네 그냥 뽑아서 풀어야하나
-
자이 고난도나 마더텅 고난도, 이투스 15분 킬러 다 풀어봤는데 좀 쉽더라구요 현재...
-
전 한끼정도만 집에있는거 먹고 다른건 나가서먹거나 배달인듯..
-
지방교대에용 점공률 42즈음이고 작년에 예비 50까진가 돈거같은데
-
두 줄이네요 9
독감이
-
외로움 이런거 말고 학점에서 불리함 등등
-
‘시험 난이도 함부로 예단하기’ 이거같음 내가 그러다가 망했거든..
-
혹시 695.49 점공 몇등인지 봐주실 분 계신가요? 만덕 사례해드려요
-
입결은 연>>>경희지만 사회나가면 어디가 더 유리할까요..? 취업 잘되는건...
-
여캐일러 투척 4
화2 정복 3일차
-
교재 퀄리티가 개지림요. 종이질이 걍 넘사고 360도로 펴지는거 필기할때 개편해요....
-
많이 별로임? 법무사+세무사 둘 다 있으면?
-
어르신 조은 하루 보내세연
-
신성규쌤 유튜브 해설 영상 다 내려간 거 아쉽네.. 0
거기서 진짜 많이 배웠는데 개인적으로 D=0 풀이 <--이게 가장 기억에 남음.
-
https://orbi.kr/5a5e99f2-422f-4155-a246-ee5065b...
-
나 어카지 0
친구들이랑 게임하기로 해놓고 잠들어버림.. 뭐라고 해야하지
-
철퍽 으아아앙
-
??
-
현우진이 최초임?
-
션티 홍보 0
키싱앱 너무 굿
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 잃어버린 또다른걸 찾다가 찾음
-
너무 막바지에 있어서 무서운데 추합도 많이 안 돌 것 같아서...
-
ㅇㅂㄱ 8
-
ㅋㅋㅋㅋㅋㅋㅋ아 설윤교로결정햇다고 글을 썼네….사범 안 썼습니당 (╹◡╹)
-
근데 교육청은 대체적으로 계산량이 좀 있는거 거 같음
-
멘사코리아 직접 가서 iq테스트 해보신 분 있어요?? 14
멘사코리아에서 주최하는 멘사테스트를 쳐볼까 하는데 (25년 일정은 아직 안 나옴)...
-
합격
-
단어가 개어렵네 0
영어 고1에서 고2모고로 올라오니 단어가 진짜 개어려운데 단어부터 외우고 오는게 맞으려나
-
이제 빨뻗고 똥글 쓰자
-
철학의 본질이 인간의 존재에 대한 질문과 탐구라면 신화는 가장 오랜시간 이어져...
-
농협 하나로마트 만세
-
내가 미안해 빨리 돌아와줘
-
오늘은 밥먹고 스카 병원 헬스장 고고혓 사람답게살아야제..
-
초염몽 원톱으로 스토리 밀었어서 갸라도스 <<< 이새기 진짜 통곡의 벽이였는데 이...
판별식을 쓰는 것은 방정식이라고 가정한 다음에 계산하는 거고요, 그래프를 이용해서 함수로 나타내는 것 역시 좌표평면상에서 y=0 (다른 말로 x축)과의 교점이 하나만 (실근은 2개, 서로 다른 실근은 1개(일명 중근)) 나오도록 만드는 겁니다. 둘 다 일종의 가정(if)입니다... 잘못 푼 것은 아니고요...
님이 접근한 이 식이 완전제곱식이 되려면 2차에서 1차항 계수의 절반의 제곱이 상수항의 제곱이 되는 형태로 푸는 것은 가정없이 가장 authentic하게 접근한 겁니다... 역시 이 풀이만 맞는 것도 아니고요...
수학은 관점에 따라서 자유롭게 변신할 수 있어야 합니다. 단, 그 변신이 논리적으로 잘못된 것이 없다는 전제 하에서요...
그런데 위의 이차식이 0이라는 값을 가질 수 없다면, 가정이 정당하지 않은 것 아닌가요?
가정이 정당하지 않은게 아니고요 완전제곱형태가 불가능하다는 결론이 나오겠죠... 실수체에서요...
방정식 꼴에서 완전제곱형태 말씀하시는 거죠?
( )^2=0 이 꼴이요.
예... 미지수가 포함된 방정식이라면 복소수체에서 따질 때에는 무조건 2차방정식의 근 2개는 존재하지만 실수체에서만 따지는 경우라면 있을수도 있고 없을수도 있습니다...
이렇게 가정해서 푸는걸 처음봐서 그런지... 익숙하지도 않고 별로 와닿지가 않네요ㅜ
아직도 이해가 안되요
수학 기법상 가장 광범위한게 행렬하고 방정식입니다... 식에서 성립하는 거면 방정식에서도 성립합니다. 방정식에서 성립한다고 식에서 성립하는 것은 아니고요... 이 말인즉슨 식에서 성립안하는 것처럼 보여도 방정식으로 놓고 보면 성립하는 경우도 존재합니다...
저 위에서 0을 가질 수 없을때는 완전제곱형태가 될 수 없다고 말씀하셨는데, 그렇다면 판별식=0을 활용할 수 없는 것이 아닌지요?
x^2 + 2ax + a^2-2a 이런 식이 있다고 하고 이게 완전제곱식이 되려면
1차항의 계수 절반의 제곱인 a^2 = a^2-2a이면 되겠죠... 그럼 a=0이 나오고 본식은 그냥 x^2이니까 성립합니다. 그런데 a가 0이 아니면 본식을 완전제곱식으로 만드는 a는 존재하지 않는거죠... 즉, 방정식으로 놓고 판별식을 쓰나 그냥 완전제곱꼴 변형을 하나 차이가 없다는 겁니다...
이제서야 생각이 났는데, 완전제곱식은 무조건 0이라는 값을 가지게 되있네요!
예를 들어 (x-a)^2이라는 식은 x=a일때 0을 가지듯이 말이에요.