난만한님 계신가요?....제발 도와주세요~
게시글 주소: https://i9.orbi.kr/0002925934
(371.0K)
[574]
help~.hwp
수능다큐 미통기 81번을 풀다가 멘붕이 왔습니다.
제 풀이방법으로는 답이 도통 나오질 않으니 잘못됐다는 것만 알겠네요..
어디서 부터 뜯어고쳐야 하는건지..
첨부파일로 문제랑 제 풀이방법을 올렸습니다.
도와주세요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제가 만든거 아닙니다..그래서 퀄리티도 그렇게 나쁘지 않을겁니다.. 원문링크는...
-
자작 아니고요. 작년 파이널 어떤 쌤이 준 문제였는데 누군지 기억이 안나네요;;...
-
수학영역의 비밀 수열의 극한 파트에서..an = 5n으로 두지 말고, 풀려면...
│x-b│>1 이렇게 시작하셔야 해요
그러면 x=-1+b 와 x=1+bd 일때 g(x)는 불연속인데 f(x)의 두 근이 -1+b,1+b면 h(x)는
연속이 됩니다. f(x)의 두 실근의 합은 4이므로 (-1+b)+(1+b)=4가 되어야 합니다.
그러면 b=2가 나오고 두 실근의 값은 -1+2=1 과 1+2=3
즉 두 실근 1,3이 나오므로 f(x)에서 두 실근의 곱을 말하는 a=1*3=3이 됩니다.
그러므로 a+b=3+2=5가 됩니다.
참공익님의 접근방법도 해설지와 유사하네요^^
우선 답글달아주셔서 감사합니다.
절대값이 나오는 수식의 접근법은 │x│>1으로 시작해야 된다고 늘 배우긴 하지만
과연 제가 접근한 방법은 아예 원천적으로 잘못된 것인지요...
음....혹시 설명해주실 분 계신가요?
글씨가 이쁘시네요 ㅋㅋ
음... 봅시다 극한을 취하는 값의 변수가 n이지요? n이 무한대로 발산하고 있으므로 n이 포함되어 있는 항을 보면, l x-b l^n 이라고 되있네요.
이 항을 잘보고 범위를 나눠서 값을 계산해야 할 터인데, l x-b l 의 값에 따라 그 n제곱의 값 또한 변하므로, l x-b l 을 기준으로 나눠야 이 값을 정할수 있어요~
써놓고 보니 빙빙 도는 느낌인데.. 제가 보기엔 n이랑 x랑 헷갈리신듯... i)의 경우에만봐도 x=b=3이라고하면 값이 1이 나오거든요... ㅎㅎ
기본적으로 저런 유형의 문제를 푸시는 방법을 체화하시지 못하신거같아여.. 굳이 b를 0 - + 로 나눌 필요가없이 Ix-bI>1 <1 =1 로 나누면 x값에 따라 알아서 b값이 정해집니다.
등비수열의 극한을 생각해보셈...공비가 1보다 클떄랑 1일때 1보다 작을 떄로 나누잖아요... 같은맥락...
그렇군요....아예 처음부터 무한등비수열의 극한이라는 점을 간과하고 절대값에 쫄아서 그래프를 그리는 것부터가 잘못이였군요.....ㅠㅠ 아직 멀었네요...저...
감사합니다~ 또 깨닫고 갑니다^^;
b>0 인 경우를 예를 들면 b>0 일때 잘생각해보시면 lx-bl의 n제곱이 발산한다는 근거가 없지않나요? b<0 인 경우도 마찬가지구요.
그렇기 때문에 lx-bl를 기준으로삼아서 수렴발산 조건에 따라 1보다 작냐 크냐 같냐 로 나누는거에요!!
도움이되셨으면 좋겠네요.