[1-6] 수학적귀납법의 이용방법
게시글 주소: https://i9.orbi.kr/00029812143
1STEP 서술의 기본 (필수 커리큘럼)
[1-2] 제시문에 주어진 정리(Theorem)의 이용방법
[1-6] 수학적 귀납법의 이용방법
[1-7] 수학용어의 이용방법
[1-8] 경우를 나눠서 서술하기
#수리논술사용법 #서지현 #수리논술
0 XDK (+1,100)
-
500
-
500
-
100
-
던만추 영어로 4
던만치네 ㄷㄷ
-
컴퓨터를 켰는데 3
배경화면 참 예쁘네.. 두 개 돌려가며 쓰고 있는데 둘 다..
-
어제도 글올리긴했는데 형이 메가모의지원믿지말라고하고 세종대 여기과 안될수도...
-
6.9.수능 다 1인데 6월 1인건 좀 가산점이 있으려나여
-
남여 9:1정도 되는듯 ㅇㅇ
-
수준높은 질문만받아요 11
ㄱㄱ
-
저는그런거무서워서못하겠던데
-
ㅇㅈ 6
종건 ㅇㅈ.
-
여캐일러 투척 2
.
-
옛날엔 절대 하면 안되는 과목이었는데 요새는 어때요..?
-
정상이었나 보네요 올해는 멘탈 관리 잘 해봐야될듯
-
Zzzz 14
-
국어때문에...
-
고2 모의고사 3등급정도 뜨는데 그냥 기출푸는게낫나요?
-
나도무물보하고싶지만 11
어차피 나 아는사람도 별로 없을거같아서 안할거임…
-
이건 진짜라는거임
-
댓글로 이모티콘 다는거 존1나 귀엽다ㅜㅜ
-
언매 1컷 0
언매 공통 -9틀이면 무조건 2라고 봐야 하나요?? 아니면 그래도 1컷에 걸칠까요...
-
분명 국어까진 긴장했고 수학 다 풀고 올해 가겠다라는 느낌이 들었는데 점심시간에 답...
-
만약에 사문하면 6
메가는 윤성훈밖에 없음? 윤성훈 듣기 싫은데
-
뭐하고지낼까
-
다들 어떻게 생각하심
-
입결 제일 낮은과 써도 고대는 어려울까요?
-
국수영지구사문 (언매 미적) 표준점수 예상 131 131 2등급 61 67 원점수...
-
숭실대 낮은과 될까요? 진학사는 간당간당한다고 떠서 ㅠㅠ
-
첫담기념 질받 29
반가워요 선넘도괜찮으니 질문해주세요
-
이러면 2컷 80밑은 확정인듯
-
육군 군수 2
12월 9일 입대 입대전 지2 개념한바뀌 할말? 사실 근데 군수할지말지도 확정 못 하긴 함..
-
ㅇㅈ 5
ㅂㄱㄸㅂㄱ
-
올오카 8권 매월승리 1-3호 빌런즈 선택(화법과작문)인데 살사람 있으시면 쪽지 오세용
-
일어나자마자 6
펑펑
-
의치한약수/설높공~낮인문까지 서로 섞여서 잘 모르겠음
-
ㅈㄱㄴ 평가원 중에도 선별한 건지 모두 넣은 건지 궁금해요
-
ㅇㅣ제 오르비만 할게요
-
올해는 수능 기준 3합5에 80퍼 3합 4에 100퍼 준 거 같던데
-
2020년이 엊그제 같다 코로나가 엊그제 같다 03년생들 22수능보러갈때 중학교...
-
아 ㅅㅂ 나 뭐했냐
-
125명 중에 3등떠서 안정 나오는디 방심 ㄴ?
-
ㄹㅇ ㅇㅈ 11
ㄹㅇ 올해 초에 난 내가 20살을 이렇게 보낼 줄 몰랐지
-
왜 오르비하노 ㄹㅇ
-
아 손목아파 4
얼불춤을 너무 열심히 했나
-
공통만 틀 원점수 80보다 공통 안 틀린 80미만 원점수가 표점 높게 나올 수도 있나요
-
쿠쿠웅
-
김범준T 인강 1
수1, 수2는 차영진T 십일워로 한바퀴 돌렸고 십일워크북이랑 쎈B 정도 풀었으면...
-
붙으면 장땡아녀?
-
07임 뭔가역전된느낌임... 07이05한테...
-
종합 두개나 떨어지니까 남은 4개도 불안해지네ㅆ,,,, 희망은 고대 뿐. 붙여줘 제발
눈나ㅏ>♡♡♡♡♡
이러시면 안됩니다
왜요 ㅠ
선셍님..
미안하다..
ㅋㅋㅋㅌ 책 사들고 알바하러 총총
통수 사랑해
와! 댕댕이!
사용법 기본편 잘보고있습니다 !!
누나.....칼럼 쓴다고 고생이 많아 ㅜㅜ
누나누나 통수가 개이름이에요???
오늘도 덕코 보내고 읽습니닿
칼럼을 매번 좋게 읽고있다는 의미겠지요? ㅎㅎ 덕분에 힘이 난답니다! 감사합니다
꼭 강의 대박 나서 인강도 만들어주세요! 지방러도 듣고 싶어요ㅠㅠ
대신! 집필에 정말 신경 많이 쓸게요! 수업못듣는 친구들이 책으로도 충분히 독학 가능할 수 있도록 강의자체를 책에 담도록 많이 노력하고 있어요 ㅎㅎ 물론 칼럼도요!
언제나 응원하겠습니다!
칼럼 너무 감사합니다♡♡♡
학교 수리논술 수업 답안 쓸때 항상 많이 떠올리고 있습니다! 좋은 칼럼 감사합니다
'~을 보이시오' 형태이면 수학적귀납법이라고 보면되나요?
어미가 중요한 것은 아니고, 무한한 자연수에 대해 등식 또는 부등식을 증명하라는 문제를 증명하기 위한 툴입니다!
모든 자연수 n에 대하여, f(n)=g(n)이 성립함을 보이는 것은
어떻게 보면, 굳이 수학적귀납법을 이용하라는 말이 없는 이상
첫번째로 생각할 수 있는 증명방법이
논제의 결론이 등식증명이므로
f(n)에서 계산을 출발하여
f(n)= ... = .... =.... = g(n)
이 나오면 증명이 끝입니다.
그런데, 수학적 귀납법을 이용하라라는 말도 없이,
모든 자연수 n에 대하여 f(n)= g(n)이 성립함을 보이라 하였는데,
위의 2020연세대 문제와같이
f(n)을 계산하기 자체가 힘든경우,
보통은 수학적 귀납법을 쓰게 됩니다.
그래서, 오히려 모든 자연수 n에 대하여(또는 특정범위로 나올수도 잇습니다. 2이상의 자연수에 대하여 처럼) 등식 또는 부등식을 증명하는 문제들이 수학적 귀납법을 이용할 수'도' 있다고 생각하면 될 것 같습니다.
모든 자연수 n에 대하여 등식 또는 부등식을 증명하는 문제는
등식증명, 부등식증명, 수학적귀납법 3가지 중에서 적절한 증명방법을 택하여 증명하면 됩니다.
어제 서점에 있길레 납치했어요
통수 사료값 입니닷
이과생인데
수열의 귀납적정의
등비급수 도형활용
함수의극한 도형의 활용같은 문제를
잘 못합니다.
수열의 귀납적정의는
어렵게 나오면
굉장히 높은 확률로 29 30 21에 배치 될텐데 매우 걱정이네요 이번 수가 100점 맞아야만 하거든요 오늘 생일인데
이번 생일이 마지막 생일이 되긴 싫습니다.
수열과 급수쪽에 도형과 관련된 문제들에 약하다는 말씀이시군요
어떤 것이 궁금한지 정확하게 말씀해줄 수 있을까요?
께-임 이름이에요
논술 질문도 많이 해주세요 ㅋㅋㅋㅋ 기다리고 있습니다 유우비트의 질문을 ㅋㅋㅋ
옮밍아웃은 에바에요... 현강에서는 모르는척 할검니다...
사실 설명이 혜자라 질문할게 거의 없어요 ^^ 낼 뵙겠읍니다 쓰앵님
항상 잘 읽고 있어요! 아까 오르비에서 샘 포스터 봤는데 괜히 반갑 ㅋㅋㅋㅋㅋ
건강도 챙기십쇼
수학적 귀납법....수열 기출문제에도 많은....
맞습니다 원래 수학적 귀납법은 수열파트에서 수열의 귀납적정의를 배운뒤 수학적귀납법을 배우는 것인데, 수열에 초점보다는 논리전개에 초점을 맞춰 서술편에 실었어요 ㅎㅎ
보니까 수리논술에도 출제 되나봅니다. 재수할 때 부들부들 하면서 공부했었는데 요샌 문제로 안나오니...
혹시나 싶어서, 수학적귀납법을 쓰는 해설부분을 좀 더 자세하게 수정해놨어요
좀더 이해가 잘될거에요 ♥
감사합니다쌤❤❤
닥추
잘보고있습니다
감사해요!
칼럼 잘봤습니다!!~ 혹시 수리논술 문제 질문 드려도 될까요? ㅠ 안풀리는 게 있어서;; ㅠ
쌤!!! 최선을 하되 건강을 생각하세요. 너무 바쁜 것 같아요.