미분가능성-개념탄탄하신분
게시글 주소: https://i9.orbi.kr/0003073848
그림과같이 도함수가 저렇게 생겨있다면 x는 1에서 미분가능할까요?
우미분계수=좌미분계수=0 이므로 미분가능할껏같기도한데
x=1에서 미분계수 f'(1)=우미분계수=좌미분계수 아닌가요?
그럼 2=0=0 되버리는데
1.무엇이 논리적으로 잘못되는지 알고싶습니다.
2.또한 도함수가 저렇게 생겼으면 미분가능할까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
흠냐링뇨 0
아함 쩝
-
잘자티비 3
반말미안티비 좋은꿈꾸라구몬
-
그러니까 빨리 팔아달라고 킅런트야.... 연휴 끝나면 그.. 올려줄꺼지??
-
자꾸 결국 발생하지도 않은 일 갖다가 마음 졸이고 있는데 어쩌죠 8
예를 들어 제가 올해 4합8 간신히 맞췄는데 4합8 못 맞췄으면 어쩔 뻔했나 이런 식으로
-
중산고였는데 문이 철문이고 조명이 개음산함 종소리도 무섭고
-
국어 인강만듣다 독학 첨으로 해보려는데..피램 독서 문학 둘다 좋나요? 0
제가 그냥 독서 문학 둘다 너무 취약해서.. 피램은 문학이 더 좋나요? 독서가 더 좋나요?
-
나만그런가 칠판강의보다 A4용지 손해설이 강의량도 적고 집중과 습득이 잘되더라
-
아이돌하나도 몰라서 다 구분이 안돼...
-
과탐이랑 언매 본다 했을때 최소 어디까진 받아야 쓸만하다고 할 수 있ㅇ나여 올...
-
해봄? 할짓이못됨ㄹㅇ
-
주량 기준 알려줘 13
얼굴 빨개지는거 알딸딸한거 속 뒤집어지는거 필름 끊기는거 기준이 뭐여
-
예산은 넉넉한데..
-
수능날 오열한 썰 아빠가 친척집에 다털어버렸다 개쪽팔리네~
-
본인 딱 세병
-
근데 너무 힘들다 이제 잡니다 ㅎㅎ 밤동안 댓 달아주시면 또 구분해드릴게요
-
이때가 명곡의 시대인데
-
연애하고싶다 4
애인사귀고싶어
-
나는 84일까 88일까 걱정했는데 결과적으로 86이었음 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ...
-
솔랭에서도 어떻게 비디디 해줘!! 일수가 있지..
-
수능 수학을 ㅈ박아서 진학사도 안 사고 단순 백분위 합으로 인서울 하위권 대학...
-
수학 77점이 2는 뜰거라고 생각했는데
-
ㅇㅈ 10
펑
-
대학가면 화석취급임? 18
군인 04인데 대학가면 신입생이 07임ㅋㅋ 내가 이성적인 감정을 느끼면 좀 이상한놈인가
-
난 닝닝이조음 4
이쁘잖아~
-
이상한쿨찐병이 2
인간관계엔 없는데 다른거에 조금 있는듯 수능 보기전엔 ‘수능 망해봐야 뭐 그냥...
-
수학개념 0
갑자기 궁금해서 쓰는데요 시발점이나 개념원리 같은걸로 개념 땔 때 어느정도 기간안에...
-
무물보 10
고대 수리논술로 감
-
뉴런하기전에 0
뉴런-한완기 생각중인데 지금 어삼쉬사 풀고잇어요 어삼쉬사 끝나고 대가리깨지면서...
-
헤이유 3
지금 뭐해?
-
체화가 잘 더 잘 되는 느낌임 주간지 때매 그런진 모르겠는데 든든함 뭔가 걍 3모...
-
25수능 끝나고 0
오늘 학교 안 가서 좋았다 생각했음
-
변표빔맞고 죽어버림
-
25수능 끝나고 3
별생각 없엇음
-
맞팔구 9
하고 자러가야지
-
뭔가 뭔가했음 학교도 적당히 먼곳이었는데
-
교실벗어나자 울음보 터짐 진짜 존나 오열하다시피 울었음
-
설사뀨는 보아라 11
펑
-
잔머리 <<<<< 솔직히 안좋아하는 남자 없음 똥머리나 포니테일할때 뒷목에 있는...
-
04가 사수 0
4… 음
-
컴공 일기271 2
https://school.programmers.co.kr/learn/courses/...
-
지금있는친구로도 좋은데 새 친구 사귀는 모험을 왜 해야하지?라는 생각도 들구 날...
-
............. 씨발서성한은갈수있을까? 중경외시? 난 어디까지...
-
다시 돌아옴 1
ㅎㅇㅎㅇ
-
메가패스지만 댓글에 따라 기꺼이 신택스 할 의향 있음
-
못봤대서 다시 12
ㅋ
-
스타일만 6
여름에
-
검색창엔 안 나오네…
-
아까까지.계속 배아파서 못자다가 이제 자야겠네 빠잉
ㅇ,ㅇ
도함수가 x=1에서 연속이 아닙니다.
즉, lim(x->1)f`(x) = 0 은 맞는데 f`(1)은 정의되어있지 않기때문에 lim(x->1)f`(x)≠ f`(1) 입니다.
f`(1)이 정의되지 않기때문에 f(x)는 x=1에서 미분불가능입니다.
1. 도함수 f`(x)가 x=1에서 연속이 아니기때문에 f`(1)=우미분계수=좌미분계수가 성립되지 않습니다
2. f(x)는 x=1에서 미분불가능합니다
헐ㅋㅋ(1,2) 점찍혀잇는거구낰ㅋㅋ왜못봣짘ㅋㅋ
연속이 아니네요;;.. 미분 가능하면 연속이다.의 명제의 대우는 불연속이면 미분불가능하다. 위의 그래프는 불연속이므로 미분 불가능.
그건 원래 함수 일때 아닌가요? 이건 도함수요
http://orbi.kr/bbs/board.php?bo_table=xi_orbi_mat&wr_id=21347
예전 오르비에서 답을 찾았네요
문레기라 이해는 잘 못하겠지만 결론은 도함수의 연속과 함수의 미분가능성은 관련없다 같네요
교과과정에서 구멍 뚫린 도함수를 다루지 않아서 연속이라는 더 큰 범위로 설명할 뿐 위 경우는 도함수가 존재하므로 미분가능합니다.
f'(1)=2
실제로 저런 도함수는 존재할 수 없습니다.
하지만 출제자의 내공 부족으로 저렇게 출제가 된다면 "미분가능하다."라고 판단해줘야 합니다.
왜냐하면 위의 박근우님 말씀대로 f'(1)이 존재하기 때문이죠.
저 그래프에서 알수있는것은 f'(1)=2 이기 때문에 좌미분계수(평균변화율의 좌극한), 우미분계수(평균변화율의 우극한)가
모두 2라는 것입니다. 글쓴이께서 계산한건 좌미분계수가 아니고 "도함수의 좌극한값"입니다.
댓글을 여기까지 내려야만 정상적인 답글이 보이다니 ㄷㄷ.. 정말 정확한 답변.. 저런 도함수가 존재할 수 없는건데 ㅎㅎ
즉
x=1에서의 우미분계수= lim(x->1+0) f(x)-f(1) / x-1
이고
x=1에서의 도함수의 우극한 = lim(x->1+0) f'(x)
인데 둘은 명백히 다르다는 것이고, 당연히 미분계수의 정의로 미분계수를 구할 때는 위의 정의를 활용해야하는것이죠.
되게 유명한 함수인데
f(x)
=
(x=0) 0
(x=/=0) x sin(1/x)
f(x)
=
(x=0) 0
(x=/=0) x^2 sin(1/x)
... 이런 것들의 x=0에서의 미분계수도 구해보고 도함수의 연속성도 확인해보고 하세요.
아 그러니깐 우미분계수가 도함수의 우극한과는 다른개념이며 명백히 f'(1)=2 이여서 도함수의 연속과는 별도로 미분가능하다는 말씀이군요.감사합니다
미분함수가 빵꾸가 뚫릴순 있어도 저렇게 미분값이 따로 존재할순 없어요 저런 그래프의 원함수 그려보세요 못그려요
그리고 빵꾸만 뚫리면 미분가능함
그림이 참 멋쩌열
교육청인지는 모르겠는데 실제로 저렇게 문제 나온적 있습니다. 그리고 답도 미분 가능하다 였고요. 저거랑 똑같은 함수였는걸로 기억나네요
f ' (1)=2 로 1에서 미분가능합니다.
기출에 출제된 바 있습니다.
4점짜리로 기억합니다.
저렇게 도함수 그릴 수 잇는 함수가 어떻게 생겻는지 궁금하네요 ㄷ
난만한씨가 잘 지적해주셨는데요.
대학교 2학년 해석학 시간에 Darboux의 정리(사잇값 정리를 보다 일반화한 것입니다.)란 것을 배우면
"이런 도함수는 존재할 수 없다"는 것을 이해할 수 있습니다.
만약 모의고사에서 이런 문제가 출제되었다면 출제자가 문제를 잘못 출제하신 겁니다.
다만 도함수가 불연속인 경우는 존재할 수 있는데요.
이 경우 함수가 대단히 심하게 진동해야 돼요.
보통 이런 함수를 가리켜서 병리적 함수(pathological function)라 부르죠.
미분계수를 정의할 때 등장하는 좌미분계수와 우미분계수가 일치해야 한다는 개념과
도함수의 우극한과 좌극한이 일치해야 한다는 것은 서로 다른 별개의 개념입니다.
미적분학을 열심히 공부하다보면 한 번 정도 이 둘을 명확히 구분하기 위해서 머리가 지근지근 아파야 합니다. 일종의 성장통이죠. ㅎㅎ