오르비 고수분들~ 저에게 한수 가르쳐주세요~~
게시글 주소: https://i9.orbi.kr/0003111603
21. 좌표공간에서 네 점 A(2, 1, 2), B(5, 1, -4), C(1, 2, 4), D(1, 5, -2)가 있다.
선분 AB위에 점 P, 선분 CD위의 점 Q에 대하여 OR(벡터)=OP(벡터)+OQ(벡터) 인 점을 R라 하자.
벡터 OR의 길이가 최소로 되도록 하는 점R의 좌표를 (a, b, c)라 할 때, a+b+c의 값을 구하시오
이 문제입니다. 한참 고민해봤으나 정확한 풀이방법을 모르겠습니다 ..
저에게 가르침을 주세요~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제 취향인데요 저는 갠적으로 훈수두기 컨텐츠랑 윤도영 선생님께서 나오시는 컨텐츠가...
-
벌써 많이한듯
-
운이없다그냥
-
논술도수시입니다!
-
추천좀
-
나 고백할거잇슴 17
나..잇잖아 자퇴할거임
-
고뱃센츄 3
이뿌던데
-
ㄹㅇ..
-
오르비에서 너무 롤롤 그러는 것 같아서 공부얘기하시는데 혼자 겜얘기는 좀 아닌가...
-
군대 ㄱㄱ 나도 생각 비우고 올 예정
-
취미생활로 가능? 대학합격하면
-
강좌수가 많지않아서 끌리네요
-
이번수능 화작 8분컷 95(공통2틀) 했는데 한번 더한다치면 언매로 틀어야함 아니면...
-
한정거장만에 알아서 다행이다...
-
놀기임 일단 논술 가시는분들은 열심히 준비하시고 무휴반인 사람들은 열심히 기말...
-
글 쓰는 이유: 주변에 정시 본 애가 저 혼자입니다. 올해 초엔 생노베 특성화고...
-
아무래도 수험생들은 잘 모를거같아서 ㅇㅇ 잘 고려하시길
-
공군컷볼때마다 4
20살에 공군 바로 박은게 인생 최고의 선택같음요
-
[의대면접 MMI 분석] 연세대 미래캠퍼스 의대 MMI 면접 - 의료 윤리 기출문제 답변 준비방법 0
안녕하세요, 의대 면접 대비 LTP컨설팅 입니다. 오늘은 연세대 미래캠 의대 면접...
-
일단 매주 복권 사야지
-
미적의 신이 되고싶다
-
제 호흡이 널리 퍼지도록
-
수험만 존나 오래해서 학교에서 하는 엠티오티 동아리 하나도 안해봄 아예 교류가...
-
전북 전남의 전부다 교과로 합격권인데 붙으면 어디가야될라나 본인이 전북에살아서...
-
수능 끝나고 뭐하지 13
흠
-
존나 많겟ㅈ?
-
소니 1000xm5 보스울트라
-
씹새들아 아득바득 컷 그만 올리라고
-
갑자기 확 줄어든다는 얘기가 있던데 진짜인가요
-
취업이 2
상상이 안되네 누가 나를 돈주고 고용한다고? 난 하우스 프로텍턴데
-
사문 ㅈㅂ ㅠㅠ 2
2컷이 40인 가능세계 없냐….ㄹㅇ..??
-
정법이 사문이랑 경제에 비해 타임어택 어떤 편인가요 3
이번 수능 사문 6분 남았는데 경제는 한 6문제 날렸어요..
-
안된다면 라인을 어느정도로 잡아야 할까요?
-
이새끼들 공군컷 의무병컷 미적컷 과탐컷도 다 올려놓더니 한국어능력시험까지 2주컷 분탕질이노 ㅉㅉㅉ
-
삼체 읽어보려고 했는데 15
두께 이거 괜찮은 거 맞지...?
-
여자랑 대화 나눠본적도 없는데..
-
어머니가 세무사 일을 하시는데 어머니 단골 손님중 한분이, 자녀분이 이제 고1...
-
물1 48 0
물리 48점 백분위 표점 어떨까요?? 하 15번틀린게 진짜… 표점 증발 7~8나서...
-
경희대 경제 가능한가요?
-
밥 든든하게 비벼서 먹고 싶다
-
달걀
-
현역인데 라인 한번만 잡아주세요 ㅠ 그리고 시대인재 다니려면 어떻게 언제 접수해야...
-
고려, 한양, 성균, 서강, 중앙, 시립, 이화, 외대, 건국, 동국, 홍익.....
-
싸움꾼의 호흡 제 1형 《저격아님》 제 2형《순수하게 궁금해서》 제 3형 《아니...
-
노래방갈까 3
후으늠...
-
맘스터치 갔다가 허거걱 역시 허윤진 goat
-
여기 없으면 틀딱임
-
지금 내신 하는 애들 정시할 때쯤 내신 영향력 꽤 클텐데 굳이?
-
안뇽하세요 4
아조씨에여 동생이번에 입시해서 논술 도와주다가 오랜만에왔어요
-
락카칠하는것보단 훨낫잖어
벡터 분해하면 되지 않을까요? OP=OA+AP OQ=OC+CQ 이런식으로요
흠 그방법도 생각해 봤는데 잘 안되더라구요 ㅠㅠ
여러 가지 방법이 있겠지만 노가다로 푸는 방법은,
직선 AB 위의 점P의 좌표: (3t+2, 1, -6t+2)
직선 CD 위의 점Q의 좌표: (1, 3s+2, -6s+4)
로 놓을 수 있고, 따라서 벡터 OP, 벡터 OQ의 합인 벡터OR는 (3t+3, 3s+3, -6t-6s+6) 이라고 놓을 수 있습니다.
따라서 벡터OR의 길이 3 root{ (t+1)^2 +(s+1)^2 +4(s+t-1)^2 } 가 언제 최소인가를 묻는 문제입니다. 근호 안의 식을 t에 관해서 정리한 후 남은 항들을 s에 관해서 정리하면 다음과 같으므로
5t^2 +(8s-6)t + 5s^2 -6s+6 = 5{ t + (4s-3)/5 }^2 + (9/5) { s - 1/3 }^2 + 4
5t = -4s+3 , s= 1/3 일 때 (즉, t=s=1/3일 때) 최소가 됩니다. (혹은 근호 안의 식을 s에 대해서 (편)미분하면 2(s+1)+8(t+s-1), t에 대해서 (편)미분하면 2(t+1)+8(t+s-1) 이 되고, 이 두 식이 동시에 0이 될 때에 최소가 되므로, 두 식 모두 0이라고 놓고 연립하여 풀어도 t=s=1/3을 얻습니다.)
t=s= 1/3일 때 최소. 즉, P(3,1,0) , Q(1,3,2) , R(4,4,2) 일 때 최소입니다. 답은 10입니다.
아 그렇군요 ..
길이 식에서 문자가 2개 나와서 괜히 쫄은 듯..
노가다 하기 귀찮으셨을 텐데 친절한 풀이 감사합니다~!