공간도형 ㄱㄱ
게시글 주소: https://i9.orbi.kr/0003122500
평면 x로부터 거리가 각각 4인 점a,b가 있다. 점a를 중심으로 반지름의 길이가 2인 원O이 있을때 점b에서 이 원에 그은 접선에서의 접점을 p라하자.
이때 점p에서 평면 x에 수직으로 내린점을 h라 할때 hp =3이다.
점 a,b사이의 거리의 최솟값을 L이라 할때 L^2 = q/p이라 할때 p+q=?
(단, 점b와 원O는 같은 평면위에 있고 p,q는 서로소)
BGM 출처 : [링크]
유튜브에서 퍼온 BGM(영상)입니다. BGM이 버벅거릴 경우, 잠시동안 일시정지 후 재생해 주세요. [유튜브 브금 넣는 법]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
응.. 그럴거야.. 그래야만해..
-
어버버버 어지러운 분위기에 처음 본 애들끼리 친해지고 반말하는거 전혀 적응안돼서...
-
걍반수해도 노리스크니까 오히려좋아
-
정시를 하면 눈이 끊임없이 오름 미치겟다는거임 근데 사실 정시를 시작할때부터 목표가...
-
간택하는 곳입니다 물론 외모가 빼어나면 간택당합니다
-
최초합5칸 5명정원 or 추합5칸 18명정원 어느쪽이 가능성이 더 있을까요?
-
극 intp라 먼저 못다가가는 성격이면 투명인간 확정인가요?
-
375칸 vs 845칸 7,8은 똑같은 대학인데 7칸짜리 학과가 더 가고싶어요
-
귀가 먹먹해요 7
아까 세수하고 로션바르려는데 안경 낀 상태로 바르려함요 아 ㅋㅋ 빨리 자야겠다 안녕히주무세요
-
누나가 뉴욕대 유학생인데 이번에 졸업해서... 저랑 두살차이나는데 벌써 대학졸업은...
-
에바잖아요
-
가천의 캠 1
가천의도 메캠에 있음? 누구는 메캠이라하고 누구는 글캠이라하고 뭐가맞음?
-
레전드 저능지 발생 24
2학기 첫날부터 공부안하고 중간기말 그냥 다찍은(진짜로 다찍은) 공생 C 그래도...
-
죄다 백수되거나 로씨행인데 지금 좀 많이 뽑는건 맞다고 생각 그치만 교수들 월급은...
-
우웩.. www.instagram.com/lovely-.-v/
-
거의 없으면 이게 한계치인걸까요 삼반수하고싶은데
-
질문을받을래요 17
전부답변해보겠습니다
-
인기과로 몰려갈 확룰 높은데 이거 어떻게 감당할 지 모르겠음 그냥 대학이든 현...
-
책추천ㄱㄱㄱ 17
지금은 한강 - 흰 읽는중
-
안괜찮아 응..
-
미친듯이 마시는 중인데..
-
해석기하 분류 3
해석기하는 논증적으로 찾아내기 힘든 기하적 성질을 (공선점, 공원점 등등)...
-
펑크 안 나겠지..? ㅎㅎ..
-
닥후인건가
-
4-5등급이 많이 듣는 강사도 n제는 어렵겠죠? N제 양치기할려고 하는데 아무거나...
-
전 되게 맘에 들어요 느낀건데 고등학교 3년은 자신의 진로를 결정하기에는 너무 짧은 시간이에요 ꉂꉂ
-
자퇴계 직접 가서 내고싶은데 우편으로 내면 ㅈㄴ 낭만없을거같음
-
현역 14244 재수 22242 (둘 다 언미물지이고 재수하면서 6, 9모 물리는...
-
기하학은 2
어떤 변환 속에서 변하지 않는 양(불변량)을 찾는 학문임. 그래서 초점을 둔 변환에...
-
우웩.. www.instagram.com/lovely-.-v/
-
선착순 1명 3
오천덕 주셈
-
취업 관련 궁금하면 10
그냥 유명 대기업에서 모집하는 학과 보셈 전자가 개많고 문과는 전멸임 물리는 생각보단 모집함
-
4등급이 1등급 맞을라면,, 물론 단어는 매일 하고 있어요
-
공부가 아니라면 고민이든 인문학적 질문이든 뭐든 개인적으로 세상을 바라보는 인사이트가 좀 괜찮은듯요
-
원래 가군 7칸 짜리 안정을 쓰려고했는데 과도 고려해보니 바꿀필요가 있다고 생각해서...
-
압구정고나왔는데 100퍼는 아니지만 대부분 압구정, 청담애들은 공부에 진짜...
-
성적으로 인하대 높공(컴공,신소재,기공)이랑 아주대 낮공(교통,환경공,건설시스템)이...
-
전반적으로 4등급 성적임 이과임 지금할까 1월 말에 할까 기본이 부족하긴 한데
-
중학교때부터 외국 살다가 한국와서 노베로 시작해서 23년도에 검정고시,수능 보고...
-
워드에 쓰면 끝이야 이거 못하면 죽어야해 진짜
-
극소수과 1등 2
5명 뽑음 스물몇명중 1등임 안정 카드로 가져가기에 너무 아깝나? 2등보다 16점 높음..ㅋㅋㅋ
-
흑흑
-
ㅇㅇ
-
가가라이브에서 만난 진학사야 난 우리가 함께했던 합격예측을 기억해 제발 다시 돌아와줘
-
확실히 꿀물이 2
아주 굿이네
-
적적해서 뭘 하기가 싫름.. 독거 노인인거임..
-
지피티가 다 써줫는데 이거 읽어야되는데 눈아픈데 어캄뇨
-
ㅈㄱㄴ
-
내가 원래 가고 싶었던 학과로.. 문과중에선 적성에도 잘맞을거같고
-
평가원 장학도 받아주고
이번주 금요일 날짜의 숫자 맞나요
맞아여 ㅋㅋㅋ
네 정답 ㅋ
앗 중앙모의고사 보는 날인데
유웨이는 26일 아닌가요 ㅋ 이번주는 비상
조아영
공대 공뷰 재밋나영?
네 재밋어여 ㅋㅋ 과는 정말 잘선택한듯 ㅋㅋ 내 적성이랑 딱맞는거 같네요 전기전자쪽이 ㅋㅋ
아...그렇구나..공대에 공학수학? 공업수학? 그런거 있다는데...선형수학? 도 들어밧는뎅.
ㅋㅋㅋㅋ 그건 어느공대를 가도 다 배우는거에요
궁긍한데 p가 1개밖에 안생기는건가요 ??
a,b가 평면에 대해 같은 방향에 있건, 다른 방향에 있건, 무수히 많은 가능성이 있지요. 문제에 원이라 되어 있는데 아마 구일 거에요. 선분ab를 포함하는 임의의 평면 내의 원이라 해도 될 거 같고요. ap=2니까, 직각삼각형abp에서 ab가 최소이려면 각bap가 최소여야 하는데 언제 최소가 될 것인가 묻는 것이지요.
저도 궁금한데 점이 p인데
hp가 3이라는 말이 무슨뜻인가여?
점이 길이를 나타내지는 않는데..
선분 hp요~~
저 3+16=19 나오긴 했는데요.
혹시 저 원과 점 o를 포함하는 평면이 평면x와 수직이 아니고
약간 틀어진? 평면이어도 이 문제답이 19인가여?
이것두 생각해주어야 하는지 궁금해서요 ㅠ
2^2+(2/루트3)^2=(4/루트3)^2
따라서 L^2=16/3
p+q=19 이렇게 나왔어요~
이 문제는 그게 포인트 아닌가요?
맨 밑에 접해있을 때 길이가 3이 되고
틀어지면 길이가 3이 앙대여~~
그래서 맨 밑에서 접해줘야 L값이 최소를 갖겠구나. 그렇게 생각했어요.
구라고 했으면 그렇게 생각하며 고민 함 해볼텐데.. 아예 문제에서 원이라고 되어있어서
첨에 그런 의문이 들었었는데 아예 배제하고 생각했어영~~
틀어지면 길이가 3이 안 되나요?^^ 틀어져도 길이가 3이 되게는 할 수 있는데, 그러면 b의 위치가 a에서 더 멀어져서 최솟값 4/루트3 보다는 커지겠지요.
b를 처음에 딱 정하지 말고, a를 시점으로 하고 문제에 주어진 평면x와 평행한 반직선을 하나 고정하고 b는 그 위에서 움직인다고 칠게요. a를 중심으로 하는 구가 있고요(혹은 다양한 원들), x와 평행하면서 x에서 3만큼 떨어진 평면으로 구를 자르면 반지름 루트3인 원이 단면이 될텐데요, p는 이 단면인 원의 둘레에 존재할 수 있으니 무수히 많이 존재 가능하지요. 이 상황에서 p에서 구에 접하는 평면을 그렸을 때, 좀 전에 생각한 a를 시점으로 하는 반직선과 만나는 점이 b가 될 수 있으니 최소일 때가 4/루트3 인 것일뿐 그 이상의 길이도 가능은 하겠지요.
넵 이해됐네요..
구라고 생각하니까 깔끔해지네요. ㅎ
틀어지면 3이 당연 안됩니다. 왜냐하면 문제에서 원하는 최소값이 나오지 않기 때문에.
굳이 구라고 생각할 필요가 없눈뎅... 난 아예 첨에 원을 구로 잘 못 보고 풀었는데.
결과는 똑같아여~~ 최소값을 가져야하니깐.
출제자의 의도는 알 수 없으나, 원 -> 구로 바꾸면 문제가 훨씬 더 자연스러운 것 같아요. 아마 오기가 아닐까 생각이 드네요. 원이라고 하더라도, 원이 선분ab를 포함하기만 하면 비틀어진 평면이더라도 다 따져주어야지요.
넵 수지님 정답 ㅋㅋㅋ 사실 처음엔 문제를 구로 설정하려고 했는데 한번더 생각하라고 원으로 냈어요 사실 원이 틀어져도 거리가 3인 p는 존재하죠 다만 밑에 평면과 수직일때 거리가 최소인걸 찾는데 포인트 ㅋㅋ
아..난 일부러 원이라고 문제에서 명시한 줄 알았눈뎅~
출제자가 고민하지말고 풀어~~ 이렇게 말하는거 같았어염 ㅋㅋㅋ
아 글쿠나..
두 평면이 수직이라고 하면 문제가 너무 쉬워지고
걍 syzy님 말씀대로 구로 바꾸면 문제가 더 자연스러워질거 같네요~~
구나 원이나 그게 그거임.
원이 틀어져도 hp의 길이가 3이 나오긴 하는데
원이 틀어지지 않고 두 평면이 수직인 경우와 틀어진 두 경우를 모두
고려했을때
점 a와 b사이의 최솟값이 생기는 경우는 두 평면이 수직인 경우이기 때문에
답이 19인거같네요.
만약 출제자가 원이 틀어지는 걸 고려해주길 원해서
문제를 최솟값이 아닌 다른 방향으로 물었다면
이것도 고려해줘야될것 같아요.
아직 이런게 기출에 나온적은 없죠.
원이라고 명시된 것 때문에 수직좌표계로 옮겨서 풀어봤는데, 답은 똑같이 나오네요.
탱구리님 저는 bp길이를 x로 뒀는데요.. 점a에서 X평면에 내린 수선의 발을 a'이라고 하고 b에서 내린 수선의 발을 b' 라고 하면 삼각형 a'hb' 의 세 변의 길이가 루트3, 루트(x^2+4), 루트(x^2-1)이 나와서 이 삼각형에서 삼각형 성립조건..을 써서 무리부등식으로 푸니까 x^2>4/3이 나왔는데.. 원래 성립조건에서 등호는 없지 않나요? 제 풀이가 잘못된 것 같은데..ㅠ ㅠ 왜 잘못된 건지 가르쳐 주세요!! 그리고 각bap가 최소일때? 이건 어떻게 하는 건가요?
그 삼각형 성립조건을 만족한다고 해서, bp가 구에 (혹은 원에) 접한다고 보장할 수 없어서 답이 안 나오는 걸거에요. bp가 구에 접하는 것, 즉, bp와 ap가 수직은 것을 좀더 직접적으로 써야겠지요.
ab의 길이를 t라고 하면, p에서 ab에 내린 수선의 발을 k라고 할 때, ak = 4/t. 이 길이가 a'h보다는 짧아야 하므로 (그림 그려보세요~)
4/t <루트3 --> t > 4/루트3.
끝으로 점b가 점a와 평면x의 반대편에 있을 때도 똑같이 따져보면 이 경우 값이 더 크게 나온다는 것을 알 수 있어서 ab의 최솟값은 4/루트3 이 됩니다.
그리고 위의 경우에 각bap가 최소가 됩니다. (이를 이용해서 풀 수도 있지요.) 그림 그려보시면 확인 가능하겠지만 p가 평면x에서 거리 3떨어지고 반경 루트3인 원 위를 움직이는데 이 중 각bap가 최소인 경우가 언제일지 그림을 통해 확인해보세요.
그리고 엄밀히 따지자면, 원으로 하면 옳은 문제가 아닙니다. 원 -> 구라고 바꿔야 하고요. 혹은 선분ab를 포함하는 임의의 평면 내에 존재하는 원으로 국한시켜야 말이 됩니다. 그렇지 않으면, 점b가 원과 동일 평면 내에 있지 않아서 점b에서 원에 접선을 긋는다는 것이 넌센스가 됩니다.
문제 끝까지 읽어주세요
헐;; 마지막 조건이 점b였는데 점a라고 오타냇엇네요
그점을 고려해서 일부러 저 조건을 준건데 아무도 태클을 안거시길래 몰랏음 ㄷㄷ
예 수정하신 문제는 오류가 없어보입니다ㅎㅎ 오타인 것 같았어요. 점a랑 원은 당연히 동일평면 내에 있는 건데 또 적을 리가 없다 생각하긴 했는데, 그게 점b의 오타였군요..ㅎㅎ