12수능 가형 21번 문제 도와주세요~~ 엄청 자세하게 질문드립니다 TㅁT
게시글 주소: https://i9.orbi.kr/0003125877
수리의 비밀에 예제로도 실려있는 문제인데요
흑흑 제가 이해력이 많이 부족해서 [삼각형 ABC를 포함하는 평면]과, [yz평면], [x-2y+2z=1]
이 세 평면이 하나의 일직선 상에서 만나도록 이동시키라는 게 어떻게 가능한건지 잘 모르겠어요 TㅁT 도와주세요
제가 이해한게 맞는건지 확인해주시면 진짜 힘이 날것같습니다 도와주세요
[yz평면], [x-2y+2z=1]이 두 평면은 이미 공간 상에서 위치가 확정된 건데
반면에 [삼각형 ABC를 포함하는 평면]은 위치가 확정된게 아니고 보기에서 주어진 조건을 만족하는 상태로 공간 상에 존재하는거자나요??
즉 세번째 사진의 상황처럼 있을 수도 있는거지만 4번째, 5번째 사진과 같은 상황도 가능한거 맞나요?
그런데 문제에서 구하는건 삼각형 ABC를 [x-2y+2z=1]에 내린 정사영의 '최댓값'을 구하는거니까 세번째 사진과 같은 상황이어야
[x-2y+2z=1]와 [삼각형 ABC를 포함하는 평면]이 이루는 각이 최소가 되고 우리가 구하는 값이 최대가 되기 때문에
세 평면이 일직선 상에서 만난다고 가정하고 푸는건가요??
TㅁT... 근데 세 평면이 일직선 상에 있지 않은 상황일 때가 답이 되는 상황인 문제가 나올 수도 있나요??
흑흑 도와주세요.. 제가 머리로 상상해내는걸 잘 못해서요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
자러감 4
밤 새려고했는데 늙어서 못새겠음 4시간반 자러감 굿밤
-
흠 8
-
진짜금붕어와지능테스트해도 질자신있음…
-
글 쓰는 중 6
이라는 글 쓰는 중
-
강제 배송이고, 많이 안 받으면 울어버릴거임. 다들 대박나셈뇨 고고
-
싫어요
-
공스타 맞팔 구 0
-
.
-
공부 시작해볼까 0
이런 삶도 그만 살고 싶어
-
학사일정에 안나와있네요ㅠ
-
진짜개빻아서 넌 의대가라 제외 댓 달릴 만한 사진이없음
-
화학 츨제진이 여기까지 노린다는 게 정설이다 스바
-
그래도 좀 있겠죠?
-
고2 모고기준 2~3 진동하는데 키스타트 재끼고 nf 하는중입니다 근데 해석...
-
내일 목표 17
베르테르 1개 풀기 코딩 하기 노래방가기 일찍일어나기 밥 2번 먹기
-
옯만추 해본사람 있음? 12
ㄹㅇ궁금함
-
무슨 글 쓰지 10
흠.
-
레벨1, 2도 대부분 오래걸립니다. 다른 문제집 뭐 풀어야하나요
-
ㅇㅈ 10
새해 복 많이 받으세용ㅋㅋㅎ
-
맞팔구 4
팔취당해서 동테됏어요…
-
코인은 망했고 주식은 거래정지 상폐예정임 ㅎ.....
-
왜케 우울해짐 3
ㅜㅜ
-
아니 노래방 너무 가고싶네 내가 또 밴드부 제안 1번 받은 무친 보컬인데말야
-
뭐야 왜 인증메타 15
그래 내가 몽땅 못봤다ㅋㅋ
-
2024 11/10 시작 수1, 수2 뉴분감미적 뉴런.수1 N제 하나수2 N제 70% 정도
-
연애 6
100일 이상 간 적이 거의 없었음 예전에는 외모가 문제라고 생각했는데 생각해보니...
-
년생/만나이/한국나이 이글저글 다 얘기하고 다녔는데도 생각보다 못맞추길래 이 순으로...
-
얼버잠
-
ㅇㅈ 15
시발…
-
태그는 3
01부터 08까지 잇네
-
찐인지 짭인지 1
흐흐..
-
사탐->과탐 조언 10
현역때 언 기 경제사문 골라서 설경다녔음 막상 그때는 공부 얼마하지도 않았어서...
-
맛잇는거 1
잔뜩 쳐먹기
-
제 나이 맞춰봐요 15
너무 많이 뿌려서 다 알듯
-
혹시 비행기 타보셨던분들 있으시면 질문 하나만 할게요 8
국내선 비행기 탈 때 출발 몇분전까지 공항 도착해야 하나요? 참고로 광주에서 출발할 예정입니다.
-
제 나이 맞추면 천덕… 10
바로 쏴드려요
-
참;
-
음..
-
님들 몇살임? 13
제가 누구 나이를 들어도 자꾸 까먹어서...
-
생윤 해설강의 보는데 18
11번 문제 왜 을이 노자임? 장자는 안돼?...
-
체취는 아예 없는 편이예요 근데 대학 가면 좀 뿌려볼까 해서.. 추천해주실 만한 거 있나요?
-
걍 제 이상형이 도란인듯… 제가 생각하는 너드남의 정석도 도?란 물론전남자라도란형이싫어하겟지만..
-
아.
-
먼저 제 실수로 피해를 입으셨을 피오르 컨설팅 팀에 사과드립니다. 죄송합니다...
-
가천대 논술 0
의대 25모의 풀어봤는데 생각보다 쉽네요 범위도 수1수2미적이라 최저 맞출 자신있고...
-
우울메타에요? 3
새로운을사년에왜들그리슬프십니까
-
걍 3
띠꺼운거 싹다 차단해놓고 며칠 잇다 푸는게 낫겟네
-
09가 여기 왜 있지 하다가 생각해보니까 벌써 준고딩이네 으악
수리의 비밀에 나와 있듯이
삼각형이 있는 평면이 결정된 게 아니기때문에
적당히 평행이동시켜서 한 직선에서 만날 수 있다고
생각하는거죠
아 근데 모형귀엽네요 ㅋㅋ
한석원쌤 해설 함들어보세요
글쓴분 왠지 공부 잘하실거 같네요 모형 ㄷㄷ....
쓰신대로 생각하셔도 되고 좀더 간단히 풀면
어차피 삼각형 넓이는 확정되어 있고, 변수는 평면들끼리 이루는 각뿐이죠. 따라서 법선벡터만 그려서 법선벡터들끼리 이루는 각만 생각해보시면 편합니다.
맞아요 마주보고 섯을때가 최소임당
저 문제는 복잡하게 생각하면 정말 복잡해집니다. 단순하게 생각해야해요.
평면은 법선벡터 그 자체로 생각해도 과언이 아닙니다.
법선벡터는 결국 이면각을 알아내는 아주 중요한 수단이 되죠.
이면각은 결국 정사영의 각도에 바로 적용!
yz 의 법벡을 n_1, x-2y+2z=1 의 법벡을 n_2 라 하고, 평면 ABC 의 법벡은 n 이라고 합시다.
일단 "고정된 법벡" 인 n_1 과 n_2 를 시점이 일치하게 찎찎 긋자구요.
그리고 문제 조건으로 n 과 n_1 사이의 각도는 알아낼 수 있겠죠?
근데 우리가 더 생각해야할 점은, 이 벡터들을 사실 평면에 있는 것처럼 표시했지만 실제로는 모두 공간상의 벡터들이란말이죠.
따라서 n은 n_1 과 어떤 일정한 각을 이루면서 n_1 을 휘휘도는, 마치 "n 이 원뿔의 모선인양 n_1 을 휘휘 도는겁니다."
그렇다면, n_1 을 휘휘 돌면서 n_2 가 이루는 각이 최소가 될 때는 바로, n, n_1, n_2 이 모두 같은 평면에 있을 때인 것입니다.
이제 더 설명 안해도 쉽게 풀리실겁니다.
이님 풀이가 최적입니다.. 요즘 법선벡터.가 이루는각 많이 물어보네요..9월도그렇고
답변해주신 분들 정말 다 고맙습니다 가려웠던데 시원하게 긁은 느낌이에요ㅋㅋ 이힝유홍님 특히 감사합니다 정확하게 이해됐어요 XD !!!
지나가다 도저히 댓글 안달고는 못 배길거 같아서댓글 남깁니다.. 사실 댓글 다신 분들 말씀처럼 그렇게 머릿속에 그려서 직관적으로 이해해도 답은 맞출 수 있을거에요.. 근데 이 문제가 객관식 마지막 문제였다는 점과 여태껏 평가원 공간도형 문제에서 이 정도의 고난도 상상력을 요구하는 문제는없었다는 점과(실제 이 문제 처음 접한상태에서 풀어보신 분은 어느정도 비약적 사고는 가능할지 몰라도 이렇게 평면을 돌려가며 생각하긴 힘드시단걸 알거에요) 특히 평가원이 수능 후 발표한 자료집에서 이 문제의 출제의도는 법선벡터의 성질이였음을 감안하면 이 풀이는 평가원이 의도한게 아니란 생각이 드네요...
제가 말하는 다른 풀이는 일단 삼각형이 있는 평면의 yz로의 정사영이 넓이로 나오기때문에 구하는 평면의 법선벡터에서 성분x는 0이 될 수 없으므로 법선벡터는 (1,a,b)로 둘 수 있고.. 이걸로 주어진 조건을 식으로 나타내보면 두 가지가 나오는데 (a,b)의 자취는 원이 나오고 이 중에서 정사영의 최소는 b=ma+n 꼴의 식으로 나올겁니다 그럼 예전에 한창 평가원에서 자주 낸 테크닉인 원 자취에서 만족하는 직방의 최대최소(접할때).. 뭔지 아시겠죠? 그렇게 풀어보시면 답이 나옵니다.
자세히 설명 못드려서 죄송하구요 정말 제 개인적인 생각으로 저 풀이가 출제의도라고는 도무지 생각이 안되서 글 남기고 가네요..
이문제는 엄밀하게 풀려면 반드시 법선벡터를 활용한 수식적인 풀이를 이용해야 해요 절대 직관적으로 평면화 과정을 통해선 해결이 안되요