[자작] 행렬의 고차식의 계산
게시글 주소: https://i9.orbi.kr/0003241077
느낌으로는 한 재작년 정도부터 이런 식의 행렬의 고차식의 계산이 종종 보이네요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
졸린기상 5일차 1
오늘도 힘내봅세
-
탐구 하나는 생1할건데 나머지 하나를 못정하겠습니다 투포좀요
-
그릇 새로 삼 0
오늘부터 1일1컵라면 하기로 했다
-
연고대 0
07이고 현재 내신 2점대 초 정도인데 정시로 갈거여서 기말부터 버리려고요 생기부도...
-
아무 치대나 가능할까요..?
-
공부좀 불안한 상태로 그만하고 싶음
-
제 주변 의반 친구들은 그냥 안넣고 성적표 기다리길래.. 다른분들은 어떤가요
-
숭배해라 대 르 비
-
ㅈㄱㄴ
-
블부이 기상 4
졸려
-
기상 완료 오늘도 ㅍㅇㅌ
-
의대에서도 본1 내신망하면 휴학하고 내신 리셋했는데 1
고1도 내신 망하면 그냥 리세마라 하는게 재수 삼수 하는것보다 백배는 나아보임...
-
킹받네 지도 내년에 고3이면서 ㅠ
-
오르새쌤 인강 0
커리큘럼 영상이랑 문풀 강의 살짝 보고 맘에 들어서 수강하려는데 듣기로는 인강...
-
킹 덕 여 대
-
의사증원에 반대하는 국민들에게 개돼지같다고 하는게 잘못된 이유 0
개돼지가 조스로 보임?
-
내가 국민들의 생명이 달린 응급실을 버리고 해외여행 가는 이유 0
우리 뽀삐 산후조리 해야함
-
국어 주간지 0
고3 평가원 모고치면 2정도는 나오다가 고중에 아예 공부를 놔버려서 3~4 정도...
-
기차지나간다 2
부지런행
-
생투 0
지투로 바꿀까요 말까요 근데 염기조성 코돈이 일년 더한다고 느는 유형은 맞음??
-
ㅇㅂㄱ 2
또 자고왔어요
-
국숭 이상은 꿈도 안 꾸고 있는데 혹시 이 정도 성적이면 어디 정도 갈 수 있을까요...
-
미치겟네 5
왜잠이안오지
-
의사들이 무슨 감사한 의사 명단을 만들어서 교묘하게 사직, 휴학에 동참 안하는 분들...
-
야식 먹을까 1
그보다 아침에 가까운데 벼고프당
-
안자는 사람 3
ㅇㅇ
-
낙서 재밌음 1
공부보다 백배
-
봐주셔서 감사합니다.
-
기하 사탐러라 미적, 물리를 안했는데 산업공학과에서 학점 따기 많이 버거운가여..?
-
아이고 사람살려
-
잔다 2
르크
-
시대는 6%라 하고 메가는 13%라는데 차이가 너무 심한거 아닌가
-
수능도 5과목인데 비슷한거 아님?
-
기차지나간당 9
부지런행
-
잘 잤당 2
일찍 일어나쏭
-
이거 치 가능? 7
어디든 제발….
-
이지영 풀커리 타는건 비추인가요?? 대성 끊을거라 임정환 이지영 중에 고민중이에요
-
왜내가하면그맛이안나지
-
의뱃 색도 바꿔주면 안되나??
-
얼버잠 1
다들 굿밤
-
지금 굳이 자려고 애쓸 필요는 없는듯
-
캬 4
ㅁㅌㅊ?
-
개구라입니다 죄송합니댜 ㅠㅠ 예비 고3 국어 커리 평가좀여 국어 : 독서(김동욱)...
-
손바닥으로 하늘 가리는거 개잘하네;; 확실히 동덕여대보단 똑똑하다
-
잠이 안옴 4
-
원랜 미적이라 확통쌩노베인데 여러 요인 따지다보니 확통에 마음이 가서 그냥 지금...
-
동시에 학사 두개 준비 가능??
-
탐구 털려서 다시하면 ㅠ 수학은ㅜ뭐해야할까요 기출은 보기만 해도 그간의 고생이...
-
(전과있는사람한테 같이사는조건으로 계약서쓰고 수능준비한다는썰) 씨발 말이되냐고 ㅋㅋㅋㅋㅋ
-
선데이는 명전만
p^n+q^n 부분을 p^n-q^n으로 바꿔야 하지 않을까 하는 의견을 내봅니다. 이 의견을 가정으로 삼고 풀이해보겠습니다.
B=(5 4 &5 4), E=(1 0 & 0 1)이라 하면 A=B+3E라는 것을 알 수 있습니다. 그러면 B와 3E 사이에 교환법칙이 성립하므로
A^n=B^n+3 nC_1 B^(n-1)+...+3^n E라 할 수 있습니다. 이때 B^2=9B이므로
A의 (1,2)성분은 4(9^(n-1)+3 nC_1 9^(n-2)B+...+3^n-1 nCn-1)이고, 적절하게 식을 변형시켜주면 이항정리를 이용하여 성분값이 4/9 (12^n-3^n)임을 알 수 있습니다.
따라서 p=12, q=3이므로 p-q=9
수식을 못 써서 풀이가 조잡해요 ㅠㅠ
멋진 풀이네요~ 제가 아는 풀이는, 1. 케일리 해밀턴 및 인수 정리 쓰기 혹은 2. A^n 의 성분을 차례대로 a_n, b_n, c_n, d_n으로 두고 점화식 세우기등인데, A=B+3E라고 해서 풀어도 좋군요!
정답이네요.^^ p^n -q^n에서 p-q를 굳이 물어본건 n=1을 대입했을때, 행렬 A로 바로 풀어내는걸 방지하기 위해서였습니다.
행렬의 고차식의 계산을 이항정리를 이용해서 푸는건 생각못했습니다. 신선하네요. 저는 점화식을 이용해서 풀었습니다. ^^