고2인데 죄송하지만 질문좀드려도 되나요?? 많은분들이 답해주셨으면
게시글 주소: https://i9.orbi.kr/0003912186
오늘 수능시험지공개되는거 기다렸다가
집에서 수학b만 뽑아서 풀어봤는데
100분다썼는데도 92점나왔습니다..
의대진학이 목표인데 수학100은 기본이라고 하던데
저도 그렇게알고있구요..
3학년때 100점 가능하겠죠..?
그리고 이번수학b난이도 어땠나요?
29 30번 틀렸습니다 아이디어가잘안떠올랐어요..
29번은 대충근접했는데 30번에서 노가다하다가 시간다쓰는바람에
결국 둘다 못풀었습니다..
29 30 멋진풀이아시는분 풀이도부탁드려요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이건 사설틱해서 그런거고 수능에선 결국 내가 잘볼것이라고 믿었음
-
ㅈㄱㄴ 부자없나요
-
솔직히 BL보단 15
백합이라고 생각해요 。>‿<。
-
국어는 평가원하고 실모 괴리가 큰 분들이 많은 듯 17
점수가 퐁당퐁당
-
수학이새기는 오르질 않고 내 발목을 3년 내내 잡았음 근데 수능에서 내 손을...
-
!
-
과거에 쓰신분들 이거 정확했나요..? 스나인데 후한거같아서ㅠ 40프로 정도 들어왔고...
-
저 나름 수능 국어 백분위 100 출신인데 서점에 이거 훑어보다가 제가 무의식적으로...
-
내가 생각해도 에반거같아서 참고있음... 인간 심리 방어기제가 이렇게 힘이 쎈지몰랏으
-
수학'만' 공부해서 수학'만' 수능 응시하려고 합니다. 원래 뉴런들으려다가 수학...
-
#~#
-
떨리는건 정말 십분 이해하지만 이미 지원한 이상 바뀌는건 없다 걍 빨리 점공하고...
-
이러고 수능때 화작 94 뜸
-
오노추 1
-
유니콘 프로 goat 18
인앱 광고도 싹없애주네 저처림 맨날 폰붙들고 사는사람에게 추천
-
엣큥 。>‿◕。 3
히히 。>‿<。
-
외모가 뛰어나서 인기인건가요? 다들 고우시네...
-
노양심같음 1년에 하나씩 성적표 나오는데 1년만써야죠
-
컨설팅에서 쓰라고한 과가 폭나면 보통 환불해주나요?
-
보내달라고!!!!
-
설대 경영 어디까지 가나요?
-
24리트로는 그 해 입시만 치를수있는건가요? 아니면 23리트를 계속 묵히다 25년...
-
반박 안받는다
-
뭐 치킨 이런 배달음식도 먹는거 잘 못봤고 카페도 같이 갈 때 맨날 개인...
-
수능 영어를 대비하기 위해 마더텅을 사서 풀고있습니다. 제 현재 독해하는 순서가...
-
킥킥… 0
오랜만에 펜 잡으니까 손 떨림 ㅋㅋㅠㅠ 진짜 힘이 없는건지 내 미래때문에 떨리는건지..
-
이과는 과라는데 2
얼마나 학과가 중요한거임?
-
덴티큐가 보고 싶구나..
-
세지는 개재밋는데 사문이 토할거같아요 근데 백분위 생각하면 사문이맞는데 가슴은...
-
여러곳에서 빵날거같은 예감이 보이네
-
기출 다하고 이제 n제하는데 맛있는지 맛없는지도 많이 먹어본 사람이 알 수 있는거니까 궁금
-
대학마다 차이가 큰가요?
-
삼반수 끝, 홍익대학교 미술대학자율전공 합격 수기! 32
오르비엔 미대 입시생들은 별로 없겠지만 ㅎㅎ 여기서 수능 관련해서 도움 받은 게...
-
오늘도 고귀한 하루되세요 。◕‿◕。
-
무조건 튈건데
-
배터리 효율 계산하는데 이러네요
-
전 낼부터 슬슬 시작하려는데ㅠㅠㅠ 늦은건 아니겠지요..
-
ㅅㅂ 너 국어 2등급이냐? 상대가 저렇게 말하면 ㄹㅇ로 긁힐거같음 왜냐면 팩트거든
-
메가패스 샀다 0
-
문법다맞으로간신히2등급달성함 ㄹㅇ 다행
-
노래방임 3
선곡 하나 빨리
-
。◕‿◕。 너
-
알바재밋다 3
ㅎ
-
질문받아봅니다 4
해봐용
-
화1 독학서 2
메카니카랑 한완수 너무 좋은데 이런 자습서 화1은 없나.?
-
연경제는 빵이다 10
점공 693이 최초합인데 빵이 아니면 뭐임?
-
정상화 좀요
-
의대나 설대 목표가 아니면 그냥 사탐으로 튀라는 의견들이 많던데… 과탐이 2 이상...
-
연고대 정시컷이 6
언매미적2사탐기준 연고대 통계나 고대 자전 정시로 올 1컷 맞거나 수학 중간2에...
29번 : (PQ^2-P1Q1^2)+(PQ^2-P2Q2^2)으로 보시면 결과적으로 두 평면의 법선벡터의 단위벡터와 벡터PQ의 내적값의 제곱의 합입니다.
두 법선벡터의 단위벡터를 h1, h2로 보시고 시점은 통일하신뒤 시점과 두 종점을 포함하는 평면을 생각하세요. 벡터 PQ는 그 평면과 평행해야 합니다. 이루는 각이 작을수록 코사인값은 커지니까요.
크기가 크면 클수록좋으니 4로 통일하시고 풀어재끼면 24나와요.
30번 : 먼저 조건 (가)를 이용해 이차함수를 구합니다. 물론 최고차항 계수는 아직 알수없습니다.
조건(나)로 넘어가서 먼저 접선의 접점의 x좌표를 t라고 두시고 접선방정식 구한뒤 (0.k)대입하세요
그리고 h(t)=k로 정리하시고 h(t) 그래프개형그린뒤 서로다른실근의 개수가 3개라는 조건을 이용하면 이차함수의 최고차항 계수가 나와요. 방정식 h(t)=k의 서로다른실근의 개수가 접선의 개수인 이유는 애초가 t값이 접점의 x좌표였기 때문입니다.