2천덕) 작년 연대 수리논술 오후 2번 문항
게시글 주소: https://i9.orbi.kr/00039820452
먼저 문제와 해설 올립니다
제가 의문인 부분은 (x1=r인 경우)+ (x2=r인 경우)+ .... (xk=r인 경우)=정답 인데
이렇게 계산하면 (x1=x2=r인 경우), (x2=x3=r인 경우), 등등 이런 경우의수가 중복으로 세어지는거 아닌가요?
아무리 봐도 이렇게 중복으로 세어지는 부분을 제거해주는 식은 없는걸로보아 중복이 안된다는소리인데
왜 중복이 아닐까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
6만덕 잃음.. 0
레어 몇개 좀 얻긴햇는데
-
주식마냥 가격이 떨어지지는 않음 그니까 메이플 템값같은거임 더 좋은 템 살려면...
-
웬만하면 포인트 같은거땜에 ㅇㄹㄷ에서 사고싶은데 사은품 별로 안땡김
-
스타얼라이언스 사주실분 10
가장 오른쪽으로 옮기려고 제가 다시 살거라 2천덕 버는거임
-
왜클릭
-
과외해본 적이 없어서 부담스러운데 학원알바로 시작하는 게 좋을지 아니면 준비 열심히...
-
버그 때문에 2만 덕코 잃음
-
쌍윤 공부법 0
생윤/윤사 매일 같이 진도 나가는게 좋을까요 아니면 윤사 끝내고 생윤 시작하는게 더 괜찮을까요
-
내일은 합격증 나올 학교 없을 것 같은데 레어 신청 후다닥 처리하면 오르비 리젠 엄청날 듯
-
종목추천좀
-
국어도 없어 수학도 내가 아는 사람은 이정환T밖에 없어 영어도 없어 사탐도 과탐도...
-
감성 제이팝 추 2
-
조발없겠네 ㅠㅜ
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
진짜 쪼매남 너무 작고 소중함 귀여움 안경 없어서 잘생겨짐
-
지금도 용돈 절반이 버스비로 나가는데 생일 지나면 이게 또 늘어난다고 으아
-
"누구랑 DM 했나"…인스타그램, 부모가 자녀 계정 통제한다 5
청소년의 과도한 인스타그램 사용과 부적절한 콘텐츠 노출을 막기 위한 '10대...
-
샤워하기싫어.. 2
이제 진짜 해야댐
-
진짜 중립이잔아
-
다들 낼모레라고 하셔서여
-
인생 2막 준비하시는 중장년층이 많이 보이는듯… 평생 직장이 진짜 없다는 게 엄청...
-
케플러 때문에 덕코 잃음
-
알바몬같은데 들어가서 구하나요?? 조교랑 과외랑 큐브 다 병행해서 돈 좀 벌고싶은데
-
수많은 인증글들이 +1하라고 부추김
-
그렇게 어벤져스가 탄생했다. 한놈은 싸가지 없는 새기 한놈은 말많은 새기 한놈은...
-
센츄 등장! 7
26수능으로는 에피를...
-
사람 거의 없음
-
왜냐면 아니니깐.
-
갈땐 가더라도 차단은 풀고 가주세요
-
오늘 센츄까지 받고 탈릅하신 스마트시스템사회님을 추모합시다… 그는 좋은...
-
홈메이드 레어 테스트 23
캬캬 0원으로 안 뺏기는 레어 만들기
-
흠
-
셈퍼 이렇게 뜨는데 어떻게 맞춘거냐고 와
-
수1 도형 특강 5
이따 올려봄
-
조용히 득템 9
집요한 사람이 득을 취한다
-
레어메타 도니까 12
사람들 다 레어 하나씩 쥐고 있네 ㅋㅋㅋㅋ
-
졷같애
-
같은게 있겠냐고
-
나는 그레이브즈 4
연막을친다
-
[단독] HID요원 신상까지… 국조에서 줄줄 새는 軍기밀 5
군 당국이 국회 ‘윤석열정부의 비상계엄 선포를 통한 내란 혐의 진상규명 국정조사...
-
팩트는 3
싼 레어는 언젠간 팔린다는거임
-
레어확인 9
감사합니다 감사합니다 감사합니다
-
그냥화작해
-
일단 5명 뽑는 소수과고요 지금 10명 점공했고 5등이에요 보통 1~2명 추합 있고...
-
암기할 시간에 딴거 공부하라고 배려해 준거 같은데
-
이해원vs오해원 4
.
-
비숲보고 뽕찼다 0
분노의 12시간 순공 갈겨야지
중복으로 세어야돼요 표1에서보면2/2/1일때 2가 나오는 횟수 2개로 계산하는거처럼요
이 문제는 n에다가 4,5정도 숫자 넣고 직접 나열해서 생각해보면 훨씬 이해가 빠름. 예를 통해 이해하는 것도 논술의 중요기술입니다!
님은 k개를 다 구분지어서 보려고 하는거 같은데 그냥
다 동일한 ㅁ로 보고 풀어보세요 어차피 구하는 건 순서쌍이 아니라 갯수잖아요
말그대로 “횟수” (또는 갯수)에 주목하세요
순서쌍이었으면 님말대로 중복되는 거 구분해야되는 게 맞는건데 아니니까 구분하지 않는거죠
예를 들면 님 설명처럼 x1=x2=2이고 x3=•••=xk=1이라고만 생각을 해봐요
이때 x1=2를 기준으로 봐도 이때 나오는 횟수는 2번이고
x2=2를 기준으로 봐도 나오는 횟수는 2번이니까
갯수측면에서는 겹치는 게 아니라 “입장이 동등한 거”
로 봐야죠
아래 설명으로는 이해가 되는데
구분을 왜 안하는지 이해가 안가네요
갯수니까요 순서쌍이 아니라요
k개중에 a개가 같아도 그 같은 경우를 구분하는게 아니라
아 그냥 같다로 인식을 해야죠 같은 것끼리 구분을 하진 않잖아요 일반적으로
구분을 하는거니까 중복조합을 쓴거 아닌가요?
중복조합은 그냥 일반적인 방정식의 해의 개수 구하는 문제의 풀이방법입니다 그래서 쓰인거고요 혹시 현역이시면 확통을 한 번 보시는게 좋을 것 같습니다
님말처럼이면 (x1,x2)=(2,2),(2,2)로 본다는 건데요
그래야죠 (2.2)는 2가 2번 나온거니 2번세야하니까 다르게 보는게 맞다고 생각하는데
이 설명이면 이해가 될지 모르겠는데 x1이 r인 경우는 이해가 가면 x2가 r인 경우는 그냥 x2자리에 x1을 넣는 경우라고 생각을 하세요 그럼 자리만 바뀐 거지 결국 나오는 경우에 대한 건 안바뀌죠 그러니 나오는 갯수도 결국 동알한 거구요 (그리고 혹시 x1=r이라는 게 x1만 r이라는 걸 의미하는 건 아니라는 거 아시죠?)
제일 자세히 설명하셔서 2천덕 지급완료
x1 이 r이고 x2 가 r인경우 각각 중복해서 계산되요 ex 위의 예시에서 x1 =2 라했을때 나오는 경우의 수가 2개 (2,1)x2 가 2개 x3가 2개인것처럼