행렬연립방정식문제문의.
게시글 주소: https://i9.orbi.kr/0004399837
그냥 그러려니 하면, 될 거 같긴 한데..
행렬연립방정식문제유형중에
'X=0,Y=0 이외의 해를 갖도록 하는 상수의 값을 구하라'는 문제가 있지 않습니까?
그러면, 애초에 그 상수를 기입한 두 식의 해중에 X=0,Y=0 가 포함되면 안되는거 아닌가요?
가령, 수학개념서들을 보면 'XY>0,XY<0이면, X=0,Y=0 이외의 해를 갖는다.'라고 써있어서 말이죠.
한국사람인데 한국말이 헷갈리네요.
당연히 그런거지 같은 답변말고,
이유있는 답변 부탁드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
-
그냥 접겠다..
-
공통수학 (22개정) 공부 통합사회 (22개정) 공부 독서 심슨 정주행
-
자라. 3
3시 전에 자야지
-
이건 팩트인듯요
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
-
차 많이 막히려나 가기 존나 귀찮네 ㅅㅂ
-
오르비엔 좋은 사람 많다 히히 하면서 대충 올렸는데 갑자기 두려워짐 현실에서...
-
인생이힘들다..... 나데나데나데나데나데나데해줄미소녀한테 어리광 부리고 싶다
-
얼버기 2
9시에 잠들었는데 지금 일남 ㅅㅂ 4시엔 다시 자야지
-
이훈식 오지훈
-
오지훈 개념완성 스텝1까지만 개념기출하고 이신혁쌤 현강 들어가도되나요? 0
스텝2 까지 꼭 수강하고 기출 풀어야 이신혁쌤 따라갈수 있을까요?
-
보고싶다 1
같이 살고 싶어 언젠가는 같이 살겠지
-
군대에서 하려고 하는데 ㄱㅊ음?? 근데 본인 4대역학 개못함 ㅋㅋ 재수강해야 함.....
-
9칸 0
이시점 라인 의미 없다는데 그래도 9칸이면 붙겠죠? 가고 싶어서 모의면접도 가고...
-
일본 애니에는 감동이 있다 가슴이 웅장해진다 진짜
-
10퍼에서 3분만에 2퍼됨
-
ㅂㅂㅇ 4
-
한달만에 완강 ㄱㄴ?
-
아직도 이해가 안된다 20
안읽씹의 심리
-
다들 그럼 뭐하는건지 쓰고나가셈
-
댓글 등의 반응은 현저히 줄어드는데 조회수는 개빨리 늘어남 ㅋㅋㅋㅋ 뭔가 있는 듯
-
중기:이거 불법입니다!
-
요즘 오르비는 다들 일찍 자는 바른 어린이들이라 3시에 하면 또 재미 없음 ㅋㅋ
-
영어 2,3 등급 차이 많이 심한가요? 예비 고3인데 그냥 영어 2등급까지는 띄울...
-
연애하고 싶다
-
고2인데 올해 모의수능 봤을때 물리3(찍맞1개) 지구5(실수 많이 함..서바 풀면...
-
.......
-
고3 때 김동욱 일클 조금 들었었는데 그때는 조금 추상적으로 느껴졌거든요(방식은...
-
진짜 오랜만에 하는 ㅇㅈ인 듯 ㅋㅋ 차피 어릴 때라 신상 털릴 일은 없어서.. 오랜만에 ㅇㅈ해봄
-
언매 0틀 87점인데 3등급 뜨면 진짜 저는 이 세상에서 존재하지 않을지도...
-
방금 그 뭐야 올렷던 사진 여기 넣어서 찾았는데 안나왔어요 미방 안했는데...
-
경희대 될까요?
-
모기야 제발 3
잘라는데 앵앵거려
-
내전휴ㅡ번호어
-
아나타모~하야쿠낫테네에에에에~
-
뭔가 요즘 그냥 11
내 무능함에 삶 자체의 동력을 잃은느낌
-
ㅇㅈ 2
그렇습니다
-
킁킁
일상적인 언어와 달리 수학에서는
이외(以外), 이내(以內), 이상(以上), 이하(以下)와 같이
'以'자를 사용하는 표현은 그 경계가 포함됨을 의미합니다.
그래서 'x=y=0 이외의 해'라 하면 x=y=0 포함이죠.
(저도 당연한 거라 생각해왔는데, 다시 들여다보니 이렇네요.)
경계가 포함되면 제가 반례로 든 수학개념서의 예시는 말이 안 맞게 되는데요?;;
저도 그 생각이 들어서 위 댓글에 내용 추가중이었는데 날아가버렸어요... ㅡㅡ
'XY>0, XY<0이면 X=0, Y=0 이외의 해를 갖는다'라는 표현은 이 기준에 어긋난 것이 맞습니다. 수학적인 언어와 일상적인 언어의 구분을 하지 않아서 온 문제죠.
수능에선 중의적인 의미를 가지는 단어는 배제되거나, 추가적인 조건이 붙습니다. 핵심이 아닌 쪽에 너무 신경쓰지 마세요~ ^^
네 감사합니다.^^ 열공하세요.
몇 가지 덫붙이자면 x=y=0 이라는 해는 선형대수학(연립방정식과 벡터, 1차원 적인 개념들을 다루는 수학의 한 분야)에서 동차연립방정식(상수항이 0인 연립 일차방정식) 의 'Trivial solution(자명해)'라고 불리는 해 입니다. 이름 그대로 그것이 해임이 자명하다! 어떤 동차연립일차방정식을 가져오든 저것만큼은 당연히 해가 맞다! 라는 의미죠. 그러나 우리가 궁금한건 너무나 자명한 것 외에 연립방정식에 어떤 또 다른해가 있을 수 있는가? 혹은 그럴 수 없는가? 이겠죠. 예를들어 자명한 해 외에 또 다른 유한개의 해가 존재할 수 는 없는가? 라는 의심이 들수도 있습니다. 그게 바로 x=y=0 이외의 해가 존재할 상황이죠. 물론 이 상황에 유한개의 해가 아닌 무한개의 해가 존재한다는 걸 우리는 알고있죠^^ 기하학적으로는 두 직선이 일치할 수 밖에 없고(물론 교과서도 엄밀하게 그것을 밝히지는 않지만) 대수적으로도 그렇다는걸 증명하죠. 그게 행렬과 연립일차방정식 문제의 본질이고 그것은 대학수학의 선형대수라는 과목 중 가장 기본적인 내용입니다.
좋은 말씀 감사합니다^^ 올해 붙으면 내년에 이 소리를 교수님께 들을수 있겠죠?ㅎ