솔로깡님 질문 사진첨부 했습니다~
게시글 주소: https://i9.orbi.kr/0004699137
댓글에서 극한값이 존재하므로 좌미분계수와 우미분계수의 값이 같다 이부분이 잘못되었다고 말씀해 주셨는데요
그런데 사진 첨부된것처럼 따라서 뒷부분: 미분계수값과 ㄱ과 ㄴ에서 좌미분계수와 우미분계수의 값이
같다. 이부분이 왜 어떻게 잘못되었는지 잘 이해가 안갑니다.
제 생각에는, 이부분 자체는 맞고,
도함수의 불연속을 따지려면 도함수 자체의 극한값과 도함수의 함숫값이 같아야한다. 이부분을 제가
뭔가 오해하는것 같습니다.
저는 우미분계수가 도함수의 우극한이라고 생각합니다. 이것이 잘못된 것인가요?
또한, 사진첨부에서 틀린 부분을 알려주심 감사하겠습니다.
----------사진이 잘 안보이는것같네요?;;;
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
‼️중앙대학교 경제학부 25학번 새내기를 찾습니다‼️ 0
‼️중앙대학교 경제학부 25학번 새내기를 찾습니다‼️ 안녕하세요, 의혈중앙 민주경제...
-
물일지 불일지 알 수 없음 전자는 국어만 보장하고 후자는 국어 수학 둘 다 원점수...
-
쎈 + 파운데이션 한달 했는데 변한게 아무것도 없는 것 같음요
-
48명은 아직 부족해 나머지 69명 들어와 ㅜㅜㅜ
-
다 만점권 실력임 질받 지하철 내리면 글삭
-
ㅈㄱㄴ 둘 다 들어보신 분? 김기현쌤 들어보고 싶은디 제가 4등급이기도 하고...
-
둥근해가떴습니다 11
자리에서 일아나서~
-
상병이라 시간도 잘안가서 군수 한번더 해볼라하는데 물1 전기력자기력에서 생1같은...
-
24수능 99 95 2 99 99 (제2외 7) 25수능 98 96 1 99 97...
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
저같이 혼자 사는 여중생은 관찰해줄 보호자가 없는데 어떡하죠..? 이새낀 약도 안...
-
서울대 정시 내신반영 광역자사고도 일반고와 같은 취급인가요 0
세화고나 휘문고나 중동고 같은 곳도 일반고와 같은 취급 받나요
-
어제는 아침에 일어나자 마자 콧물 주르륵 흐르는 느낌 나길래 휴지에 대고 풀었는데...
-
젠장 또 내 위로 들어왓어
-
공항도 있고 ktx역 2개나 있고
-
피와눈물이담긴제목입니다..
-
각이 보이는데 있나요...?
-
님들 쌍지하세요. 물론 난 물지임
-
숫자 이쁘다 6
이원준 | 150 | 100
-
수능 직전에 미칠 것 같을 때마다 생각나서 들었는데 묘하게 마음이 편해지더라구요...
-
과탐마냥 정하면 바꾸기 힘든 과목이 아니기도 하고 과목 수도 많아서 한 두개쯤은 잘...
-
과외만 하다보니까 알바공고에 올라오는 시급 1만원이 이렇게 보이면 안되는데.. 아..
-
답변도 그냥 한 유저의 생각일 뿐이니 한 귀로 흘러들으셈
-
요즘 과외 시급 7
한 5~6년 전에도 시급 3 넘는 과외 많았는데 요즘도 시급 3정도에서 +-...
-
면허든 토익이든..
-
성심당은 방부제 처리를 안하나봐요 더 믿음이 가네요
-
시간이 해결해줄테니까
-
아무튼 그럼.............
-
서울대인데 수능 성적은 3등급 미만이어도 과외 가능한거임?
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
지거국은 충남대 경북대정도 입니다 지방교대는 대구 진주 청주 정도
-
여긴 정말 조용하네 점공 보니까 여기가 진짜 같은데
-
수시역겨운점 3
쓸데없는 전형이 너무많음
-
지금 안 따면 평생 안 딸 수도 있음 지금만큼 시간 나는 날이 없어요 군대 제일...
-
난 급식
-
빵굽다. 12
방가방가
-
재종 공부 0
재종에서 본격적으로 공부할 거 같은데 대성이랑 메가 인강을 사긴 해놨어서 들을 수...
-
점심 ㅇㅈ 5
-
운전하기 귀찮다 0
지하철타고갈까
-
원래 규정이 그럼?? 아니면 뭐임??
-
수능도 그냥 지나가는 하루처럼 느껴짐 근데 긴장 너무 안해도 털림 적당한 긴장은 도움이된다
-
참피디 레전드 떴다 21
우설 무한리필이 5만 2천원 예약 때려서 바로 가야겠다
-
ㅈㄱㄴ
-
전 국어 시작 직전에 너무 긴장이 안 되니까 졸음이 쏟아져서 풀다가 자는 게 아닌가 걱정했어요
-
3학년 선택과목은 사문생윤인데 2학년때 윤사를 했었고 사탐런을 사문으로 많이...
-
반박 안 받음 그 어떤 수제 밤 디저트를 먹어도 바밤바가 떠오름. 존나 잘 만든 아이스크림임
혹시 ctrl + 해도 안보이시면 댓글 달아주세요! 다시 찍어 올리겠슴다.
ebs 수능특강 : 도함수의 정의 - 일반적으로 함수 f(x)가 "정의역" X에서 미분가능하면 "정의역"에 속하는 모든 x에 대하여~
지정된 두 함수에서 정의역이 서로 다릅니다. 애초에 x=0에서 위의 식이 정의되지 않고, x=0일 떄, 함숫값은 0이다 라고 되어있습니다. 즉, f'(0)을 정의할 수가 없는데, 그걸 "있다고 가정하고" 생각을 했다는 것이 문제인 셈입니다.
잘못된 점은 "lim (xㅡ>0) x^2 sin (1/x) =0으로 존재" 부분입니다.
x=0에서 해당 함수가 정의되지 않았으므로 존재한다고 할 수 없습니다. f(x)=x^2 sin (1/x) 가 x=0에서 정의된 함수식이 아니므로, 미분계수 구하는 식에 저렇게 대입할 수도 없고요.
x=0일 때 함숫값이 0이라고 강제로 지정한다고 해서, x^2 sin (1/x)의 식을 미분계수의 정의에 대입해도 되는 것은 아닙니다. 애초에 x^2 sin (1/x)가 0에서 정의되지 않았으니까요.
f`(0)을 정의할 수 없다는것은 f`(0)을 구할 수 없다는 것과 같은 말이라고 생각해도 되나요?
그런데 식으로는 사실 구할수 있지 않습니까? 정의를 통해서..
위 식에서 함수 f도 사실 정의되어 있으니까요.
미분계수 구하는 식에 저렇게 대입할 수 없다는것은 좀 이해가 가지 않습니다.
이게 실력정석 연습문제 기본 10-3번인데요, 답지도 제가 써 놓은 풀이와 같습니다.(f`(0)을 구할 때 미분계수의 정의 이용->위 정의된 함수를 미분계수 식에 넣음)
말씀하신 지정된 두 함수라는 것은 x=0일떄와 x=0이 아닐때를 말씀하시는 것이지요?
문자들을 혼용하다 보니 쓰면서 혼동했네요.
g(x)=x^2 sin (1/x) 의 함수에 대한 g'(0)을 정의할 수가 없습니다. (제가 의도한 것은 f'(0)이 존재하지 않는다는 것이 아닙니다.) f'(0)=0으로 명백히 정의됩니다.
정석책이 지금 없어서 잘 모르겠지만, 도함수를 구하기 위해서는 미분을 해서, 도함수의 식을 도출하여 좌극한, 우극한을 나타내는 방식으로 해설했으리라 추측합니다.
아까 정신없었는데 이제 다시 보니 정리되네요.
일단, 원함수의 도함수가 존재한다는 것은 '좌미분계수와 우미분계수가 일치해야 한다'는 뜻이 확실합니다. 하지만 도함수가 x=a에서 연속이라는 것은 도함수의 우극한 값과 도함수의 좌극한값이 같다는 것이고요.
저 위 수식에서 잘못된 논리로 전개된 것은 좌미분계수와 우미분계수를 도함수의 우극한과 도함수의 좌극한으로 전제하고 논리를 이끌어나갔다는 점입니다.
이 둘은 서로 다른 별개의 개념입니다. 도함수의 정의, 미분계수의 정의로 해당 논리 '좌미분계수, 우미분계수의 국한은 도함수의 좌극한, 도함수의 우극한이다'는 것을 이끌어낼 수 없습니다.
그렇군요... 우미분계수와 도함수의 우극한을 동일시해서 틀린것이군요 알겠습니다
정말 감사합니다!
이와 관련해서 한 정리에 대한 링크 붙여넣겠습니다.
http://unolab.tistory.com/83
링크 내용을 요약하자면, 함수 f(x)가 미분가능하더라도, 그 함수의 도함수가 미분가능하다는 보장도,연속이라는 보장도 없습니다만, 중간값의 정리는 항상 적용할 수 있다는 것을 의미합니다.