[화1] 고난도 문항의 비밀 (1)
게시글 주소: https://i9.orbi.kr/00055805289
안녕하세요 수능 화학 강사 김동준입니다
다음회까지 화학식량과 몰을 마무리(?)하는 의미로
고난도 문항의 비밀 한 가지를 알려드리려고 합니다
사실 제목을 예전에 즐겨보던 웹툰을 패러디해서
역전! 야매화학 이라고 하려다가 너무 따라하는거
아닌가 싶은 생각에 고난도 문항의 비밀 정도로 바꿔봤습니다
(이미 무슨 말 하려는지 감이 오는 분도 좀 계실거같네요)
일단 바로 들어가보겠습니다
2021년 7월 학평 화1 17번입니다
바로 작년 문제라 아마 많은 분들이 기억하고 계실법한
준킬러임에도 불구하고 오답률 1,2위를 다투던 문제였죠
이 문제를 빠르게 해결해보려고 합니다
(가)에서 (나)로 넘어가면서 탄화수소가 17w 첨가됩니다
여기서 (나)에 첨가된 탄화수소를 구성 원소인
탄소(C)와 수소(H) 질량비로 나눠보면 다음과 같습니다
C3H4의 C와 H 질량비 9 : 1
C4H8의 C와 H 질량비 6 : 1
우연히(?)도 모두 더하니 17w가 되네요
→ 9w + w + 6w + w = 17w
여기에 야매를 0.1스푼 정도 추가해서
“탄화수소 종류에 따른 질량비를 대략 알고 있다면”
(가)에서 CxH6 5w이므로 C : H = 4w : w이 아닐까?
C:H=4:1 이면 C2H6?!
정리해보면 (나)에서
C2H6 C : H = 4w : w (5w)
C3H4 C : H = 9w : w (10w)
C4H8 C : H = 6w : w (7w) 이고
따라서 (나)의 C:H 질량비=19:3으로
ㄱ,ㄴ,ㄷ을 처리할 수 있습니다
이 문제를 이론적으로 접근한다고 하면
전체 질량이 17w, 부피는 9V, H 원자 수는 2N 증가이므로
증가한 양을 활용할 수 있습니다
(가)에서 C는 x로 알 수 없지만 H는 분자당 6개이므로
4V를 4몰(상댓값)으로 보아 H 원자를 24몰(=N)로 잡고
첨가한 C3H4와 C4H8의 부피를 각각 aV, bV라 하면
증가한 H 원자 수는 4a + 8b = 48몰(=2N)이 됩니다
부피는 9V 증가이므로 a+b=9이고
둘을 연립하면 a=6, b=3을 얻을 수 있습니다
이를 통해 증가한 질량을 분석해보면
C3H4 (M=40) 6몰, C4H8 (M=56) 3몰의 질량은
40x6 + 56x3 = 408이고 이게 17w 이므로 w=24.
따라서 CxH6 4몰의 질량 5w를 120이라 할 수 있고
CxH6의 분자량은 30이 되어 x=2를 얻을 수 있습니다
다만 여기까지 찾았다고 해도 ㄷ을 해결하기 위해서는
구성 원소의 질량비로 나눠보는게 제일 합리적이겠죠
여기서 복잡하게 각각의 C, H 질량 계산을 하고 있으면
19, 20번을 날리게 되니까요
하나만 더 보면 22학년도 대비 9월 평가원 화1 18번입니다
기체 1g 부피비가 15:22 이면 분자량비는 22:15 이고
여기에 야매를 0.1스푼정도 추가하여
“대표적인 질소 산화물의 분자량을 알고 있다면”
(가)는 N2O (M=44), (나)는 NO (M=30) 입니다
원자량은 Y가 X보다 크다는 조건이 있으므로
Y가 산소, X는 질소이며 따라서 (다)는 N2O3 (M=76).
물론 이 문제도 이론적으로 접근할 수는 있습니다
(가)와 (나)를 비교하면 분자량이 감소하는데
X와 Y의 질량비가 (가) : (나) = 1 : 2 이므로
Y가 증가할 수는 없고 X가 감소하여야 합니다
구성 원자 수가 5이하이고 원자는 자연수이므로
X, Y가 동시에 변해서 질량비 1:2가 나올 수는 없고
Y가 일정할 때 X가 2:1로 감소하는 상황에서
원자량 X>Y를 만족시키는 경우를 찾으면
처음 풀이와 같은 결론을 얻을 수 있습니다
다만 이 문제도 18번 문제이고
여기에 시간을 너무 많이 소모하면
킬러를 풀 시간이 점점 없어지게 되겠죠
여러분이 대비하고 있는 수능은
‘학문’이 아니라 '시험'입니다
화1을 치는 입장에서는 효율적으로 잘보는게 중요하지
얼마나 학문적으로 아름답게 잘 풀었는지가 중요한게 아니거든요
어쨌든 완벽하게 이론적이지는 못한 것이기에 조심스럽고
개인적으로는 이런식으로 화학을 하는게 좀 슬프기도 합니다만
어쨌든 수능 대비에 도움이 되는 관점이기 때문에
단원을 마무리하는 의미로 쓰게 되었습니다
다음 글에는 이 ‘야매’ 풀이가 나름의 근거를 갖는 이유와
자주 나오는 원자량과 분자량 등을 정리하고
주의할 점 등을 이야기해보려고 합니다
오늘도 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
할 거 추천 좀 1
블라블라
-
기출이랑 사설만 푸는 무료한 수험생활에 그나마 재밌는 지문+머리쓰는 기분 나서...
-
백분위로 89 93 3 98 98인데 진학사에서 중대 경영이 3칸이 뜨던데.......
-
왜 아직도 2021 새해를 비는겁니까
-
1교시부터 7교시까지 반이 시끄러워서 수학만 하고있는 07정시파이터입니다.....
-
1학기 복학하고 2
2학기 반수로 볼까 ....
-
텔스 중경외시권 0
지금 얼마나믿어도됨? 99ㅇㅈㄹ나는데
-
사회문화현상이랑 자연현상 구별이 잘 안되는데 어떡함
-
ㅈㄱㄴ
-
뭐 더 추천함?이유도 적어주면 ㄱㅅ
-
요즘 리겜이 잘 안되네 12
늙었나
-
정말 공부량에 비례하게 성적이 올랐는지 생각해보면 거의 아닐텐데 이십대 초반을...
-
애니 뭐보지 5
오늘 시험 끝나고 진격거 파이널 보고 나서 뭐보지... 주로 럽코 보는데 볼만한거...
-
문제 유형 사탐중에선 제일 개 ㅈ같은데 그래도 참고하시나
-
지금이 1억3천인데 어디까지 갈지 궁금하네요 또 여긴 주식시장이랑 다르게 각종...
-
오르비는 26티콘으로 그때가 마지막 기회임을 예언한거임....
-
1. 방멱 (power)원 O와 점P가 주어졌을 때 점 P를 지나는 직선과 O의...
-
각자 점심 먹고 홍대쪽에서 만날건데 머해야됨 ㅠㅠ 둘다 라쿤 좋아해서 라쿤카페도 생각중 머하지 진심
-
있음? 강기원 현강 가려는데 뉴런에 없는 내용도 알려줌? 실전적으로 잘 체화할 수...
-
오늘이 11월 29일이니까 태양의 적경이 대략 16h? 저기 보이는 저 별자리...
-
어디갈수있나요
-
갑자기 궁금한게 2
의대 25학번들은 선배들이 꺼리거나 안좋게 보려나
-
님들은 취미가 뭐에요? 14
스트레스 푸는 취미가 있으신가요?
-
대학가기전에 n수밖으면서 미기확을 셋다 즐겨보라는게 아닐까 기하 찐 고민되네 미적...
-
코 수술 해라
-
ㅈㄱㄴ
-
마크는 알겠는데 너무 조용하네
-
낄낄낄
-
성형비용 근데 1
눈코 다합치면 500정도 나올텐데 시발 이거 어케 내냐 비용… 이거말고도 보증금도...
-
첨에는 그냥 내가 여기까진가보다하고 받아들이려했지만 노력한거에비해 성적이 잘 나오지...
-
성격상 예전부터 '뭔가 무지성인 거 같은 윗사람의 지시에 아무 생각 없이 따르기'를 잘 못했음...
-
수능 진입 희망하시는 분들 궁금한 것들 여쭤봐주시면 아는 범위 안에서 답변해드리고...
-
근데 병원 가고싶어도 부모 동의 필요해서 아직 못감
-
1. 완전사변형 (complete quadrilateral)이렇게 직선 4개와 그...
-
멘탈 개박살난거 기억나뇨 ㅋㅋㅋ 쉬운 문제는 좀 풀만한데 좀만 어려워지면 그냥 하루...
-
ㅈㅔ 팔자도 같이 필 수 있었을까요
-
사반수하면 2
낭만의 물2 생2 갈길게
-
떡볶이존나먹고싶 3
오몬오온노ㅗㅗ
-
스튜어트 정리 사교좌표계 시소 정리 등등 잡기술 마늠 사실 아는 잡기술은 별로 없음뇨
-
나 장례식하면 부모님만 계실듯
-
Fact 5
이대 다니고 있는 애들 보통 생각이 자기들 학교가 중앙대급 혹은 그 이상이라...
-
42223이고 생1 지1 했었습니다
-
각각 하루평균 몇시간정도 하셨나요?
-
26수분감 끝내고 바로 엔제실모돌리기vs수분감끝내고 26뉴런듣기 둘중하나...
-
간장 새우 먹고 싶다 새우 튀김 먹고 싶다 크아아아아악
-
뭘로 갈까요? 이번 수능 생지 31 인데 유전이 저랑은 너무 안맞는 거 같아서...
-
면접망침 멘탈 5
어제 면접 개망쳣는데 자꾸 그 장면이 반복재생됨 자살뛰러감 시발!!!ㅜㅜ
-
왜 조회수 높냐 0
슈냥 방송 안 켜있는데
첫번째 댓글의 주인공이 되세요!
첫번째 댓글의 주인공이 되셨네요 ㅎㅎ
내신 킬러 문제에도 활용할 수 있을까요?
어느정도 선까지는 될텐데 다 적용할 수는 없을거에요 평가원에 적용하는것도 다음 글에 이야기 하겠지만 이걸로 다 풀린다 가 아니라 적절하게 섞어서 쓰는 방식이 될거라서요
넵
잘보고갑니다
맨날 잘 보고있습니다 ㅎㅎ 사소한거라고 생각할수도 있는데 이런 팁들을 생각하다 보면 시험장에서 무기가 될수 있을거라고 생각합니다 !
넵 다양한 도구를 갖춰놓으면 그만큼 더 도움이 될거에요~ 답글 고마워요 ^^
정말 화학1은 아름다운 풀이니 뭐니 수학이랑 비슷하면서도 결국 빨리 확실하게 푸는 것이 최고의 풀이인 것 같습니다
해설에서는 이론적으로 설명해주어야겠지만 잘 풀기 위해서는 요령이 매우 중요한...
그쵸 나름의 엄밀성을 추구하기는 하지만 너무 그쪽으로만 가도 시간이 부족하다보니...ㅠㅠ
혹시 서메기 출강하시는 그분...?
ㅎㅎ 넵 혹시 작년에...?
사실 쌤한테 수업 듣지는 않았는데
올해 윈터스쿨 교재에 쌤 성함이 있어서요
앗 그렇군요 ^^ 기숙사 생활 힘들었을수도 있었을텐데 고생했어요~!