벡터=좌표라고 생각하면 큰 낭패
게시글 주소: https://i9.orbi.kr/00056751794
[기하 선택자(또는 수리논술대비)를 위한 칼럼]
기하, 즉 도형에서 가장 중요한 것은 점이에요.
모든 도형은 점으로 이루어져 있기 때문이죠.
도형에 대한 연구는 고대 그리스 시절부터 아주 활발했습니다.
직선, 각, 삼각형, 원 등 평면도형에 대한 대부분의 성질은
무려 2천년전에 “유클리드”님이 다 정리해 놓으셨다죠.
그런데 미친넘천재 유클리드도
정의하지 못한게 하나 있으니
그것은 바로 '점의 위치'입니다.
우리가 중학교때까지 배우는 도형들은 위치가 없죠.
그냥 어딘가에 있는 삼각형, 원 이렇게 배우잖아요.
고등학교 수학에서
점의 위치를 나타내는 방법을 두 가지 배우는데,
첫번째가 좌표로 점의 위치를 나타내기
두번째가 벡터(두두둥장)로 점의 위치를 나타내기
이 두가지는 아예 개념이 달라요.
그림으로 표현하면 아래와 같습니다.
1. 점의 위치를 x, y 좌표로 나타내는 방법
익숙하죠?
모든 점의 위치를 원점을 기준으로 생각하는 것이죠.
생각해서 존재하는 데카르트님이 좌표평면을 떠올렸다네요.
2. 점을 가리키는 벡터를 이용해서 나타내는 방법
원래 벡터는 위치가 아니라 크기와 방향으로만 정의가 되는데
모든 벡터의 시점을 통일시키기로 약속하면 한 점과 어떤 벡터는
반드시 일대일로 대응이 되는거죠.
이걸 점의 위치벡터라고 합니다.
따라서 그냥 위치벡터가 아니라,
점A의 위치벡터, 점B의 위치벡터인거에요.
그럼 좌표로 하면 되지 뭐하러 굳이 왜 벡터로 점의 위치를??
이라고 생각할 수도 있겠네요? 그 이유는 뭘까요?
벡터로 하는게 편한 경우가 있어서에요.
좌표로 점의 위치를 나타내면 원점을 기준으로 해서
점의 위치를 절대적인 값으로 나타냅니다.
그런데 점의 절대적인 위치를 알고 싶은게 아니라
이 점이 쟤랑 걔 사이에 정확히 중간에 있어.
아니면 얘는 쟤랑 거리가 몇이래.
이런걸 표현하고 싶다면? 굳이 좌표가 필요없어요.
점들 사이의 상대적인 위치만 있으면 되니까요.
이럴 때는 벡터가 훨씬 편하네요.
예) 점P는 점 A와 점 B의 중점이다.
이걸
이런 식으로 표현할 수는 없겠죠?
그런데
벡터로 표현하면
이렇게 표현을 할 수 있어요.
점은 연산이 안되지만 벡터는 연산이 되니까요.
직선이나 원 같은 도형의 방정식도
위치벡터로 나타내면 훨씬 편리하답니다.
물론 벡터의 용도는 여러분의 상상 이상으로 훨씬 더 많아요.
여러분이 즐겨하는 게임에서
벡터가 광범위하게 활용되기도 하죠.
그리고 대학에서 배우는 벡터는
평면기하와 별로 상관이 없는 추상적인 개념이고....
설명하자면 끝도 없는데
일단 평면벡터만 생각해서 예시를 들어봤어요.
[결론]
여러분이 기하 선택자라면 (그래서 읽고 있겠지만)
위치벡터의 개념부터 제대로 잡고 시작하세요.
만약 위치벡터를 이해 못하면,,,
갑자기 나오는 벡터에,,, 도대체 이걸 왜 배우는건지,,,
삼각형 평행사변형, 그림놀이 열심히 하다가
갑툭튀 등장하는 내분점 공식같은걸 보면서 이건 또 뭐지...
배운건데 왜 또 나오지.... 그러다가 준킬러님 두두둥장
하시면 손도 못대는 경우가 생겨요.
기하에서는 30번 레벨 벡터문제까지
반드시 맞추도록 대비해야겠죠?
그래야 미적분 선택자에게 불리하지 않으니까요.
벡터는 확실히 잡고 갑시다!
------
여기까지는 정보성,
아래부터는 잠시 상업성을 띠는 점 양해부탁드리며...
[수업안내]
올해 기하는 수능 대비 현강이 별로 없는 듯 해요~
그래서 6평 대비 수업을 합니다!!
장소는 대치동 디오르비! 시간은 목요일 6시반부터!!
현장강의 + 라이브 입니다.
6평대비 3주 특강 <16416-기하>
이번 수업으로 기하, 특히 벡터에 대한 감이
확실하게 잡힐 거라는거 자신있게 말씀드릴게요.
지난 수업은 복습영상으로 수강가능하고요.
이번 수업 교재 뿐만 아니라 개념교재도 무료로 드립니다.
그동안 대충 알고 있던 개념을 완벽히 정리하면서
킬러가 체계적으로 풀리도록 만들어 드리는 수업이에요.
신세계를 경험하고픈 기하러는 다들 오세요.
제가 책임지겠습니다.
[16416 수강신청 링크]
https://academy.orbi.kr/intro/teacher/252/l
기하의 기초
평면도형과 도형의 방정식을 총정리하는
<아름다운 시작 - 도형>도 강추입니다!
[이승효T 특강 수강신청 링크]
https://academy.orbi.kr/intro/teacher/256/l
문의 : 디오르비 02-522-0207
칼럼이 도움되셨다면 좋아요와 팔로우 부탁드릴게요.
상승효과 이승효였습니다 :-)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
번역이 이상해 그냥 영어로 보는 게 마음이 너무 편함
-
. 8
벡터 분해 후 힘 합성 벡터 분해 후 평속 두 물체 동일 가속도 충돌 -> 하나...
-
이번 미적 28 29 30 다 틀렸는데 시발점부터 다시 할까요? 1
고민중 베이스가 약한건가 싶기도…
-
Riesz representation theorem 3
Schur's theorem Gram-schmidt orthogonalization...
-
수학 난이도 어땠음?
-
현역때 35343으로 덕성여대 붙었는데 24221로 덕성여대를 가..? 수학이 많이...
-
신검받으러가요 9
귀찮네요
-
한심한 2
나!
-
지구 노베고 오지훈쌤 들으려면 메가패스 구매해야하는데 그냥 이훈식쌤 듣는게...
-
3수하면 슬픈점 6
내가 군대다녀오면 나랑 동갑인 사람중에 대학을 졸업하는 사람이 나온다는 거임..
-
한지 vs 사문 2
현재 사탐런을 준비하고 있는 예비고3입니다. 평소 구글어스로 다져진 세지 관련...
-
안정적으로 될까요 아니면 좀 빡센가요
-
물리 잘 6
할거 같이 생긴 나
-
장난전화 0
-
1년전이랑 똑같은글 썼는데 똑같은반응이 있음,,,,,,
-
대학원생 아저씨입니다. 재작년 쯤부터 입시철마다 물리학과/자연대/공대 진학 관련...
-
독서 배경지식 쌓을려고 교과서 읽는 건 어떻게 생각하세요? 2
중학교, 고등학교때 뭘 하고 왔는지 관련 지식이 떠오르지가 않네요... 젠장할...
-
대가로 내 이미지가 곱창날거 같긴한데..
-
근데 진짜 이감 성적이랑 수능 성적이랑 거의 상관이 없나봄 1
상관이 있어봤자 고득점하면 한 수능날 3등급 이상은 맞는다 이 정도 근데 아무짝에...
-
크럭스나 피오르 1
당일날 미리 대기타고 파바박 해도 실패 할 확률이 있는거죠...? 하 너무 절실한데 ㅠㅠ
-
약간 잠긴 목소리 이것부터가 분위기 압도하네 걍
-
나머지는 그냥 2하는거 추천 특히 물2화2는 대학다니는 공붕이들이 다시 공부하기에...
-
내투자철학임
-
주제넘게 사람살리는 의사 되려고 나대지 말라는거임 니가 특출난 사람이 아니고...
-
님들 어그로 죄송한데 김범준 커리 탈까요 현우진 커리 탈까요 올해 수능 81점(20...
-
하 시발 악몽꿈 0
수능 이미 좆망했는데 수능장에서 허둥대는 악몽꿈ㅋㅋ
-
어차피 설명의무를 다하지 않았다는 판결 그거 그냥 꼬투리잡고 도의적 배상하라는...
-
연고대 가고싶다 0
제발 사탐이들에게 구원을
-
병훈T 강의가 곧 사라진다는 사실이 너무나 아쉽네
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
n년을 쏟아부었는데 올해도 안될것 같네요 정시의대는 진짜 미친짓인것 같습니다
-
책 추천해주세요 8
경제 관련된 걸로
-
님들이라면 어디 가심
-
ㅈㄴ 생산적인데 시간도 잘감
-
텔그살말 3
7만7천원 내고 궁금증을 해소함과 동시에 정신병을 얻기
-
난 사실 미소녀 12
겠냐 왜 들어옴?
-
보통 가천대 준비히면 학원들 다니길래
-
지사의랑 입결 비슷한가요
-
내년에 또 할거같은데 목표는 메디컬임 올해 수능 화학 47점 맞음..2컷 점수고...
-
쉬워서 할말이없네ㅋㅋㅋㅋ
-
개찝찝하네 이거 어캄 피부병걸리는거아님?
-
가천대논술 5
나만 어려웠냐..?
-
아니면 이조차도 이룰수없는 꿈인가
-
움짤 투척 4
짱 이쁘당
-
여유부리면서 오랜만에 자습중인 1인 헤헤=)
-
지원없고 돈이 많이필요한상황이면 1000만원어케마련함??하 알바도할게없어돈도많이안주고;
벡터를 변화량이라고 인식하니까 그 의미가 와닿더라고요. 생긴건 가만있는 선분인데 움직임을 표현할수있다니. 단순한 표현 하나로 복잡함을 정리하는 수학의 아름다움이 느껴집니다.
단순한 표현 하나로 복잡함을 정리하는 수학의 알흠다움. 크~
우왕 미적해야징
대박 재밌겠다... 내가 재수했다면 바로 기하했다
쪽지 드려도 되나요
네~
쪽지 답장 부탁드립니다
수학과는 사학과네요..