수능 수학, 개념 응용과 문제풀이의 공부 방법 - 1 -
게시글 주소: https://i9.orbi.kr/0005843604
안녕하세요 레바입니다.
이 문제는 작년 수능 문제인데요, 이 문제를 푸는 방식을 통해
행렬 ㄱㄴㄷ 문제를 어떻게 공부해야 하는지 대략적인 설명을 해 보도록 하겠습니다.
이와 같은 행렬 문제를 보면, 우선 조건을 다 나열해보세요.
1. A2-AB=3E
2. A2B-B2A=A+B
이 두 개가 조건입니다.
우선 ㄱ 선지를 보겠습니다. A의 역행렬의 존재성을 묻는데, 이거는 1번 조건으로
쉽게 해결이 가능합니다. A의 역행렬은 (1/3)(A-B)가 되죠.
그러므로, [1번 조건을 사용]한게 되며, 2번 조건은 아직 사용하지 않았고,
ㄱ을 통해 새로운 세 번째 조건을 얻었습니다.
3. A-1=(1/3)(A-B)
이 조건을 말이죠. 이제 ㄴ 선지를 보도록 하겠습니다. AB=BA인데요, 이는 1번 조건과 3번 조건을 통해
쉽게 해결할 수 있습니다. 행렬과 역행렬 사이에는 곱셈의 교환법칙이 성립하죠.
그렇기 때문에 A(A-B)=(A-B)A가 성립하며, 이로부터 AB=BA를 이끌어낼 수 있습니다.
이제 새로운 조건을 또 하나 얻었네요.
4. AB=BA
이제 ㄷ 선지가 남았고, 아직 사용하지 않은 조건은 2번 조건과 4번 조건입니다.
여기서 문제풀이의 방향을 잡는 것이 중요한데,
'가장 이상적인 것'은 그냥 선지를 보고 이건 참이겠다, 이건 거짓이겠다 감을 잡고
그대로 풀어나가는 것입니다. 하지만 그렇게 이상적으로 되지 않기 때문에 훈련을 하는 것이죠.
그러므로, 저렇게 (A+2B)2=24E이다. 와 같이 무언가 식 변형을 통해 이것을 이끌어낼 수 있다!
하는 오오라를 풍기는 녀석을 만나면, 우선 식 변형을 통해 참임을 증명하겠다! 와 같은 접근을 먼저 해보는 것이 좋다고 생각합니다.
아까 위에서 설명드렸을 때,
증명 방법에는 식 변형을 통해 명제를 이끌어낸다, 반례를 든다, 귀류법을 사용하여 모순임을 보인다, 식 변형을 통해 명제와 다른 결론을 이끌어낸다. 이렇게 있다고 했는데,
위의 ㄷ 선지는 반례를 들기는 좀 애매하고.. (저 조건을 다 만족시키는 행렬 찾다가 시간 다 갈겁니다.)
귀류법을 사용하기에도 애매합니다.
결국은 식 변형을 통해 (A+2B)2 가 어떤 값으로 나오는지 알아내야 한다는 것입니다.
우선 A+2B와 관련된 식을 이끌어내야 하는데..
아직 2번 조건을 사용하지 않았죠? 그러므로 일단 2번 조건을 건드려봐야겠다!
라는 생각을 해야 합니다.
뭔가 인수분해가 가능한 꼴로 생겼는데,
새로 알게 된 4번 조건, AB=BA라는 것으로 인해
2번째 조건은 다음과 같이 변형이 가능합니다.
AB(A-B)=A+B
음.. 그런데 여기서 어떻게 ㄷ 선지를 이끌어내지? 하고 고민이 되는데,
이게 잘 안되면 다른 조건들을 살펴봅시다.
1번 조건과 3번, 4번 조건이 있는데, 여기서 4번 조건으로는 뭔가 할 수 없을 것 같고..
1번 조건에서 식을 잘 변형하면 A(A-B)=(A-B)A=3E!! 오호! 뭔가 아까 변형시킨
AB(A-B)=A+B의 양 변에 A를 곱하고 싶어집니다!
그래서 A를 곱하면,
3AB=(A+B)A가 되고, 이는 3AB=A2+AB (4번 조건 AB=BA 활용)
A2=2AB가 된다는 사실을 알아야 합니다.
이제 여기서 새로운 것을 이끌어내고 싶은데..
1번 조건 변형식을 보면 A(A-B)=3E,
2번 조건 변형식을 보면 AB(A-B)=A+B이죠.
어? 1번 조건에서 양 변에 B를 곱하면 뭔가 있을 것 같다! 라는 느낌을 얻어야 합니다.
(이런 느낌이 얻어지는게 쉬운 일이 아닙니다. 하지만, 이것을 많은 노력을 통해 해내야 합니다.
이 과정은 누가 특별한 약을 줘서 한 번에 해결되는 것이 아니라,
많은 시간을 투자해야 하는 부분이므로 그냥 칼럼이나 공부법 책같은거만 읽고
적은 노력만으로 가능한 해법을 찾으려 하지 마세요.
그냥 묵묵히 노력하는게 답입니다.)
그렇게 변형을 하면, 4번 조건 AB=BA라는 점에 의해
1번 식은 AB(A-B)=3B로 되고, 이것을 통해 3B=A+B,
A=2B를 얻어낼 수 있습니다!
그러면, ㄷ의 (A+2B)2 는 사실 (2A)2 였던 것입니다.
결국 4A2 가 몇인지만 알아내면 되는 문제로 변했습니다.
그런데, 아까 얻은 것중에 A2=2AB가 있었죠?
이를 1번 조건에 대입해보면, AB=3E가 나오게 되고,
4A2=8AB=24E라는 결론이 나오게 됩니다.
따라서, ㄷ 선지도 참임을 알게 되는 것이죠.
뭐.. 뒷북 수학이나 다름없는 풀이를 보여드렸는데,
요지는 행렬 ㄱㄴㄷ 문제를 풀며 공부를 할 때,
위와 같은 생각을 하면서 체계적으로 접근하는 공부를 해야 한다는 것입니다.
물론, 이것보다 본인에게 더 잘 맞는 공부법이 있을 수도 있고,
행렬 합답형 문제정도는 이미 마스터해버려서 이런 공부법이 필요 없을 수도 있습니다.
그러므로, 이 글은 그냥 참고용으로만 봐주셨으면 하는 바람입니다.
요약
1. 문제에 주어진 조건들을 다 체크한다.
2. ㄱ, ㄴ, ㄷ 순서대로 문제를 해결한다.
3. 문제가 잘 풀리지 않으면, 사용하지 않은 조건들이 있는지 체크한다.
4. 특히 ㄷ 선지의 경우, 식 변형을 통해 접근할 것인지,
귀류법을 활용할 것인지, 반례를 찾기 위한 시도를 할 것인지 잘 선택해야 한다.
(이런 감을 잡는 것은 말로 해결되는 것이 아니라, 수많은 노력을 통해서만 가능하다.)
5. 수식 변형을 자유자재로 할 수 있도록 연습을 해야 한다.
이렇게 되겠습니다. 그러면 이만 글 마치도록 하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
team 06인데 40주 한번도 안빠지고 김승리 현강 출석했는데 성적이 크게 오르지...
-
장영준 선생님의 언어학 101을 추천드립니다. 입문서라서 그런지 확실히 좀 책이...
-
정법은 최적 들을건데 사문은 누구 들을지 고민중이에요 최적은 오탈자 많다는 말도...
-
케이온 재밌음? 2
봇치의 대선배라던데
-
딱 사기 직전 상상하는 순간이 제일 행복함
-
정털리는게 정상이지? 자기는 ㅁㅈㅌ qwer로 알았다는데 썸타는사람한테 성인방송bj...
-
리턴!
-
誰かいませんか 2
덕코 선착 1명
-
지금 프사 뭔가 똥테랑 안 어울림
-
안녕하세요 수능 19 27 (28) 29 30 틀렸습니다(19 뺄셈실수, 28...
-
뚝
-
평균 시급이 어느정도됨요..? 생초짜 면접보러오라그랬으면 얼만진 먼저...
-
이 문제 풀어보실분 11
복잡한 수식 ㄴㄴ
-
대박 ㅋㅋㅋ 얼마만이냐 ㅋㅋㅋ
-
야마다 료 7
장발 료
-
기만좀 해볼께요 8
-
지구과학이랑 비교해서 개념량이 얼마나 되나요??
-
님들생각엔 5등급제로 바뀌는데 ㅈ반고 가는거 에바띠인가여 3
애들공부 ㅈ도안하고(내신따기쉬움)생기부개못써줌그냥학종못쓴다봐야함 전교1등이 건대수의대감
-
덕코만 많고 #~#
-
올해 69수 233 뜨고 재수하려는데 현우진 미적 시발점 듣는거 어떻게 생각하세요
-
ebsi 괜찮은 쌤 아시는분 있나요? 없르면 메가대성중에 괜찮은 쌤 추천좀..
-
ㅈㄱㄴ
-
아내는 왜 채식만 고집하게 된거임? 꿈 때문에 그렇게 되는거임?
-
유튜브에 쓰레기 닌자 카카시의 일대기 이거 누가 만들었냐 3
앞에 10분만 봤는데도 ㅈㄴ 웃기네
-
20240628 2
이게 킬러임?? 28번 킬러라는데 24수능부터 그런 기조엿나요
-
성적표 발표 이후에 하루에 1-2시간씩이면 그래도 컨설팅 없이 혼자서 대학 라인...
-
몇분컷했는지 기억이 좀 애매한데 11시쯤에 20번 건든것같음 이정도면 뉴런들어도 될려나
-
왤케 허무하지
-
민 족 고 대 6
내게 크림슨 과잠을 다오
-
어떤 느낌일까요 열등감 아쉬움 없이 만족감으로 가득찬 그 느낌 궁금
-
밥이 어케 들어가지 ㄹㅇ 토할것같던데
-
스발 수시반수 실패하고 전과 신청 사유 쓰는거 ㅈㄴ 0
존나비참하네 신청사유 학업 적성 및 진로 학업계획 적으라느ㅡㄴ데 으 스발 나도 저...
-
처음만나는 날 뽀뽀는 어느정도 최소한의 외모까지 할수있어?
-
갑자기 갤러리 뒤지다 발견함 난 3칸인가 4칸이었던 거 같은데
-
꼬1기가 되고프다 11
금주 중
-
오늘 저녁 6
촉촉한 초코칩 2개 먹으려햇는데 하나 개박살 낫네.. 하나만 먹어야겟다
-
수능 복기? 21
애초에 긴장하는 스타일은 아니고 전날밤에 가서 뭐할지 다 생각하고 자료 챙겨놨었음...
-
글 보다가 궁금해짐
-
굿밤 10
갑자기피곤해졌어요 먼저잘께요
-
뭐 했다고 2024년의 마지막 달이 오냐
-
장편으로 된 책을 마지막으로 접한게 3년전임
-
회당 브릿지 2000원, 서킷 2500원임요 이륙허가???
-
현우진쌤 커리 영상 왤케 신나보임?ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 3
빨리 집 가고 싶은데 들키면 안되니깐~ 스미마셍 스미마셍 하면 다이죠부 다이죠부...
-
07 정시러 4
사탐런 할건데 조합 추천 부탁드려요!!
-
똥테다 야호 7
야호(감각과직관아님)
-
못하겠어 ㅠ
-
들으면 1>5로 등급 상승한다는데 어떤가요?
감사합니다~
긴글 잘 읽었습니다.
읽다보니 저도 수학 공부가 불끈 하고싶어지네요..^^::
미친척하고 수능 다시 한번 봐보으리? ㅎㅎ
오르비에서 레바님과 같이 노닥>거리고 싶은 레알 노땅 ㅠㅠ(접니다.)
감사합니다 추천하고갑니다