24학년도 9평 수학 손해설지 및 간단한 총평
게시글 주소: https://i9.orbi.kr/00064305235
2024 9월 평가원 모의고사 수학 by 익성T.pdf
시험 보느라 대단히 고생 많았습니다.
파급 수학 팀의 익성T에요 :)
오류 및 오타제보, 질문, 제안 등등 언제든 환영입니다.
간단한 총평을 남기자면 다음과 같습니다.
9번: 교육과정 해설서와 교과서에서는, '삼각함수의 그래프를 그릴 수 있다.'라고 명시하고 있고,
sin함수와 cos함수의 그래프의 관계를 말하고 있습니다.
10번: 수능 기출문제의 재활용입니다.
제가 강의에서 자주 사용하는 말인 '초벌 그래프'를 그린 후
계산으로 자신있게 밀고 나가야 합니다.
13번: 구간별 함수를 구성하는 두 함수식이 딱 봐도 유사해 보입니다. 직선대칭임을 활용하여 빠르게 그림으로 치고 나가셨어야 합니다.
14번: '추론'에 정당성을 부여할 수 있어야 합니다.
교과서에서의 지수함수와 로그함수의 그래프 주제는,
역함수 관계가 가장 중요하지만
'점근선'또한 힘주어 이야기하고 있습니다.
15번: '극한의 성질'문제풀이에서 '반복되는 작업'에 대한 캐치가 필요하고, 자신있게 치고 나가며 풀이해야 합니다. (실전은. 기세야.) 캐치하지 못 해도 상관 없으나, 시간은 제한되어 있습니다.
21번: sigma 조건을 어떻게 풀어헤쳤냐에 따라 계산량이 달라졌을 것입니다. ‘13'은 뒤의 확률과통계 문제에도 등장하네요.
확28: 발문을 정확히 독해하고, '기록'하면서 풀어야 합니다.
확률이 완전제곱으로 표현되는 경우를 잘 이해해보세요.
확29: 손풀이에는 모든 경우를 망라하여 놓았으나,
확률을 묶어 경우의 수를 셈하는 것으로 풀이했어야 합니다.
확30: '반복'되는 작업입니다. 케이스 분류는 맞는데, 케이스 분류가 아닙니다.
미28: 6월 모의평가에 비해서는 현실적인 난이도입니다.
'정적분으로 정의된 함수'에서 무엇을 배웠는지, 정직하게 풀이하면 됩니다. 다른 요행은 필요하지 않아용.
미30: '미적분'과목의 '미분법'은 무엇이든 다 할 수 있습니다.
변수를 두 개 이상 설정해도 괜찮습니다. 출제진을 믿으세요.
기29: 기출문제를 살짝 낯설게 틀어 상황은 그대로 출제하였습니다. 타원의 정의를 활용하여 선분의 길이의 차의 최솟값 조건을 선분의 길이의 합으로 바꾸는 것은 이제는 개념의 영역인 듯해요.
기30: 완성도가 높은 문항입니다. '벡터의 상등'을 정확하게 알고 있었어야 했고, 미지수 설정에 대한 거부감이 없었어야 합니다.
비주얼은 쉬워보이는데 막히는 문항들이 꽤 있을법한 시험지였습니다. 평가원이 뒷통수 때리는게 하루 이틀이 아니라 9평 수학이 쉽게 느껴졌다고 수학을 내려놓친 않으셨으면 합니다.
9평 이후 EBS 수특, 수완 선별좌표 최대한 엑기스만 추려서 올릴 계획입니다.
알다시피 최소한의 문제로 최대 효율을 낼 수 있다는 것은
당장 아래 글 링크를 보시면 아실겁니다 ㅎㅎ
20 수능 나형 28번 적중:
20 수능 FINAL EBS 나형 적중 자료(28문항):
좋아요, 팔로우 해주시면 놓치시지 않을 듯 합니다.
모두들 수고 많으셨습니다 ㅎㅎ
감사합니다.
최신 기출 중 특정 단원 특정 난이도만 무료로 풀고 싶다면?
모킹버드 n제 코너 소개 링크:
지인선 님이 참여한 싸맛과 실모를 풀고 싶다면?
해당 사이트는 아직까지 데스크탑에 최적화 되어있습니다.
데스크탑이나 태블릿 이용을 권장드립니다.
'가입만' 해도 N제 코너는 평생 무료이며
자작 실모 1회 추출도 가능합니다.
(그림을 클릭해도 사이트로 연결됩니다.)
(오르비의 허락을 맡고 올리는 게시글입니다.)
익성T 소개
모킹버드 소개글: https://orbi.kr/00063268579/
모킹버드 무료 모의고사: https://orbi.kr/00063739018/
지인선 N제 2024: https://orbi.kr/00062075350/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
노는것도 술먹는것도 클럽가는것도 너무 행복한데 재수걱정에 마음은 불안하고......
-
시대재종 수리논술 강사로 가셨네 예전에 엔제 재밌게 풀었는데 갑자기 벌점받고...
-
타율 잘나옴 특히 요붕이들은 진심으로 믿고 있었어 사랑해~~
-
진짜 ㅈ됨. 나 어쩌냐 대학 못 가겠다
-
학교 문제에 이거 그대로 나왔는데 숫자 보고 무슨 문제집인지 아시는 분 댓글...
-
오르비 웃긴 짤 원탑 ㅋㅋ
-
ㅈ댈빤햇다
-
화1하다 화2가면 인지부조화오고 기억이 뒤섞일거같은데 PT일정인 경우 V와 n이...
-
오페라 하우스
-
밥먹지말걸 13
개후회되네
-
아는 선배가(작수 사문 100점) 윤성훈은 너무 지엽적인 내용 많이 알려줘서 윤성훈...
-
집에 갈거야 2
으응
-
3모때 2아니면 높은3이 목표입니다
-
사진이..굿노트 전송이 안댐.. 그래프를 슥슥 잘 그려보면 +-...
-
아니 왜지우냐 0
내가 말을 너무 심하게했나
-
24살부터는 순수한 연애를 하기 힘들다고? 어림도 없는 소리!!!@@
-
충분히 먹지 않았을까..
-
아직 메디컬은 레전드긴하네
-
장영진t는 다 좋은데 강의 텐션이 많이 떨어지고 올해 컨텐츠가 좀 부족한 느낌?...
-
더이상 갓스물 응애가 아니라 중고 새내기에 재수생 나이라고,,,? 현역밭 사이 활짝...
-
영상통화를 잘못 눌러서 19
너무 당황함.. 실친도 아니고 옯스타에서.... 폰이 맛 가기 직전이라 터치가 안...
-
도형못해서 기하 못함 케이스분류못해서 확통 못함 강 제 미 적
-
반짝이는 가로등 보고 내가 우와아 왤케 예뻐 이거 봐 예쁘지 이러면 응.. 사진...
-
기하못하고 미적못하는 통통이가..
-
국어 인강 질문 0
대성이랑 이투스 있는데 올오카 독서랑 훈련도감 이렇게 듣는게 나을까요? 아니면...
-
내일 잇올 상담받으러 가는데 떨리네용
-
아니근데 만19세가 15
영화랑 술 담배는 1월1일부터 뚫리는데 왜 주식만안됨
-
수국김 김덩욱 고전시가 반응스위치온 일취클 체크메이트 문학 독서 이렇게 들을건데...
-
ㅇㅇ?
-
스스로 논란거리가 되시길 자처하시는 겁니까 하루에 하나씩 저격글이 올라오네
-
1시간동안 열심히 만든 문학 문제는 아무도 안보는데 0
어찌하여 뻘글들은 오늘도 26을 하는가…
-
월요일 좋아 0
다들 출근하고 나 집에 혼자거든
-
손발이덜덜
-
얼버기 6
입갤
-
미적 계산량에 깔려죽게 생겼다
-
완전대칭인 최고차항 계수 1인 사차함수 극값 두개 알고, 1
극대를 갖는 x값 하나 알 때 1:루트2 비율관계 쓰는거 말고 좀 더 깔쌈하게 식...
-
은행상품에 가입해야겠다
-
현실에선 인가경도 상위권이다라고 말씀하시는 분들이 계십니다단순 수치상으로는 정시...
-
고옥고옥 0
고려대가고싶어서울었어
-
정약용 ㅅㅂ 1
진짜 너무 오지랖퍼아님?
-
전화추합이 4
2월 극말이나 3월에 오는 경우도 있나요??
-
주식같은걸 하면 쓰나 만18 세는 계좌도 못만드네
-
작수 2등급따리가 버텨낼수 있을지 살짝 쫄리는 부분 지금 6주차까지는 버겁진않음
-
뱃지다니깐왜케 1
오르비를 믆이하게 둰거같지 뱃지달린사람들 보면서 부러워햇는데 나한테 달리니깐 신기함...
-
PCR 2회차긴한데 개맛잇게풀었음 그냥거의고추슥슥비비면서풂
-
수학은 실전개념 강의가 되게 많은데(뉴런 알텍 프메 스블 등) 과탐 실전개념은 왜...
-
그러니까 돈을 잃지
등급컷 ㅇㄷ?
등급컷은 메가나 대성이 잘 예측할 듯 해서 ㅎㅎ
미적분 28번 문항 오류있습니다. x<0 일때 넓이 하나당 1이 맞습니다.
아이고 오타 났네요. 감사합니다.
개인적으로 미분가능에 대한 언급도 포함해주시면 좋을것 같아요. 왜 a의 후보들이 n/4파이 꼴인지에 대해서요.
추후 배포되는 지면 해설지에는 잘 적어두겠습니다. 감사합니다!
n/4네요 ㅎㅎ 올리시느라 고생하십니다 ㅎㅎ
비주얼은 쉬워보이는데 딴딴한 실압근 같은 느낌이었어요 ㅎㅎ 수고 많으셨습니다.
13번 y=-b 대칭이 무슨뜻인가요?
예를 들어 f(x)를 y=a에 대칭시킨 식은 2a-f(x)입니다.
문제 상황에서는 y=-b에 대칭시켰다는게 바로 나오죠
(1/9+2/9)^2하는 이유를 모르겠어요. A에서 두개+B에서 두개+ A에서 한개 B에서 한개 해서 (1/9)^2+ (2/9)^2 + (1/9×2/9) 이렇게 나와서요
X_1=2, X_2=2 는 또 아래 2케이스가 있어요
(1) 처음에 3의 배수 나오고 두번째 3의 배수 아님
(2) 처음에 3의 배수 아니고 두번째 3의 배수임
3의 배수 나오고 A에서 뽑고 또 3의 배수 나와서 A에서 뽑고 3의배수 안나와서 B에서 뽑고 또 B에서 뽑는 방봅도 있지 않나요?
넵넵.
그래서 X_1=2 확률이 1/9+2/9 이고
X_2=2 확률이 1/9+2/9 이여서
저럴게 제곱식 써진거예요