지인선x이로운 모의고사(공통,확통,미적) 풀이 (링크)
게시글 주소: https://i9.orbi.kr/00064673973
https://cafe.naver.com/pnmath/3469790 (문제배포 원문 링크, 회원가입 필요)
https://cafe.naver.com/pnmath/3464347 (제작자의 저작권 관련 유의사항 및 시험지 컨셉 안내)
운 좋게도 지인선x이로운 모의고사를 배포 전에 풀어볼 기회가 있었습니다.
시간을 재고 풀어보고 그 풀이를 출제자께 제출하였고
배포 전까지 시간이 넉넉해서 몇 문항들에 대해 물어뜯어볼 시간도 충분해서
실전풀이에 생략된 내용이나 추가할 내용들을 영상으로 제작할까 하다가
손풀이 형식으로 써 내려갔습니다.
다양한 풀이를 열어두셨다는 출제자의 말씀에 제 실전풀이와 다른 방향의 풀이들도 고려해서 적어두었습니다.
문제를 풀어보신 분들은 맞추신 문제들도 한번 살펴보시면 도움이 될까 싶어서 공유합니다.
두 링크를 모두 보시면 좋을 것 같습니다.
https://cafe.naver.com/pnmath/3470040 (배포전 풀었던 실전풀이)
https://cafe.naver.com/pnmath/3470690 (실전풀이에 생략된 내용들을 적어둔 손풀이)
4개의 링크 중 문제배포 링크를 제외한 나머지 링크는 회원가입 없이도 볼수 있도록 열려있습니다.
부족한 부분은 이 게시물이나 해당 링크의 게시물에 댓글로 달아주십시오.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
흠.. 5
이게뭐지
-
질문 받아요 3
-
이거 뭐냐 ㅅㅂ 나 쓰라하시는대;;
-
2016년에 거론되던 저항권 발동 드가는거긴 한데 흠
-
국회의원 현행범 체포계획까지 있었는데 윤석열이 이거까지 할생각을 안했다고?
-
몇 수 앞을 내다 보신 겁니까 KICE여
-
한잔하고 주무시고있나
-
잠 좀 자자 2
아오
-
왤케 뒤가 구리지 뭔가 더 있어보이는데 음..
-
야준석은 찐따마냥 욕박는거밖에 못하는데 쇼맨쉽 goat의 행동은 역시 다르더라
-
무물보 16
여긴병원이야
-
지가 계엄령 지지하고 싶다고 했으면서 갑자기 피해자 코스프레는 뭐임 1
ㅋㅋㅋ지능 문젠가
-
누굴 잡아족치겠다고 계엄령을 여는거임 북한 얘기는 또 왜하고
-
담을 안넘은 죄
-
계엄령 자체로 근들갑 떨지 말라하는건 뭐지? 설마 그 뜻은 아니겠지?
-
추천 안받는다 이미 보고 왔다 ㅋㅋ
-
고2때부터 정시준비해서 작년겨울방학 때 김동욱 언매 체크메이트하고 이번년도...
-
저거 뭐임ㅋㅋㅋ
-
살아서 다행입니다
-
법적으로 이거 설마설마설마 가능하기는 한가여
-
영화본 느낌이네 2
윤즈 도파민
-
인구구조상 이제 30년은 진짜 먹을듯함
-
그냥 자러갑니다 0
잘자요~ 별일없길 ..
-
우선 저는 2차계엄이 가능한지, 해제 후 재계엄까지 쿨타임?이 필요한지는 모릅니다....
-
이거 프사하고시픔뇨 14
어떰뇨
-
대통령은 계속 계엄령 딸깍 하고 국회의원들 전부 본회의장에 텐트치고 계속 해제표결 딸깍 ㄱㄱ
-
나도 잘까
-
다음 대통령때 국회 법안 프리패스 시키려고하는거아닌가 이정도면 ㄹㅇ 뭐임뇨
-
1석은 이준석으로 밝혀져...
-
가짜뉴스 출처확인도 안하고 퍼뜨리고 스토리에 되도 않는 불안감 조성 ㅈㄴ 하고...
-
이미 25증원 예산 전액삭감에 의평원 인증 무력화 작업도 실패한지 꽤 됐는데 이제...
-
하.........
-
국회에 보수는 한동훈계하고 이준석계만 남을거 같음. 3
친윤궤멸 확정일듯.
-
일부러 수능 뒤로 잡은듯
-
절차상 국무회의 심의를 거쳐야 해제가 되지만 국무회의는 의결기관이 아니라...
-
다들 어디가,,,, 이렇게 라도 모여서 좋았다구,,,,,ㅠㅅㅜ
-
이정도는 해야 지구 1위 부자 해보는 거구나 부럽다….
-
윤통의 큰그림 0
국힘이 계엄령에 반대하게끔 하고 다시 지지율을 끌어올리기 위한 윤버지의 계획아닐까?
-
정확히 말하면 윤석열이 계엄 해제 선언 안하고 뻐팅기면 9
계속 계엄이 유지되는거임 근데 법상으로 계엄이 유지된다해도 국민이 그런거같지 않다고...
-
예나 0
잘자..
-
윤석열 어차피 무기징역엔딩인데 다음 무브 있을수도 있음 6
이미 무기징역은 확정임..
-
석열 스구루…
-
대박
-
ㅋㅋㅋㅋㅋㅋ
-
수만희인가 어디서 보기론 논술충원률 12프로정도던데 맞음? 올해 연대는2배하고...
-
곧 대통령이 되실 그분으로
-
빠꾸먹어도?
-
Sky가고싶은데 1
1사탐 1과탐(물리) 할거에요. 공대나 경영을 목표로 하고 있는데 사탐 과탐...
-
시험장에서의 체감 난도가 점점 덜 느껴지고 기억이 미화되면서 예측 컷이 점점...
28번에서 g를 f의 접선의 x절편의 역함수라고 두고 고민하다가 포기했는데 그냥 계산문제였군요…ㅋㅋ
미적분에서 함수 개형을 추론해야하는지 그냥 계산으로 뚫어야하는지 매번 포인트를 잘못 잡아서 틀리는거 같은데 양치기로 해결이 되려나요…? ㅠㅠ
저도 매번 같은 고민을 하는 것 같아요. ㅎㅎ;
개형 추론을 더 우선시 하고 접근하는 편인데 뭔가 케이스가 많아질 것 같다 싶으면
바로 식으로 접근하기로 돌려버리는 중인데
좀 더 실력이 늘면 그런 것들을 잘 구분할 수 있을까 싶고..
오 고수님도 마냥 수월하지만은 않군요… 위로가 되네요!