절댓값 질문입니당
게시글 주소: https://i9.orbi.kr/00065069086
모고풀다가 헷갈려서 뇌정지 왔는데, 양쪽 다른표현인거 맞나요…?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시작해볼까 하는데
-
뭐가 더 빡셈?
-
텔그 vs 낙지 1
하나만 할까하는데 뭐가 정확한가요?
-
24112 1
어디 됨? 제발 누가 좀 알려줘봐 재수해도 가능성 있는 점수임? 중경외시는 아예 불가함?
-
첨 풀어봤는데 너무 어렵군요;;
-
보는맛 ㅈㄴ 없네 키리코 아나 관짝 갔나
-
대학 라인 어떰 2
교차까지 생각해서 어느젇도될거같음? 재수생각중이깆함
-
좀 애매한거같아서.. 만약 붙으면 상향을 못쓴다 라는 게 좀 걸려요
-
ㄱㅇㅇ
-
삼반수 0
작수백분위 국수탐탐 97 89 78 84(1233) 올해백분위 메가기준 95 98...
-
가챠용부계 두개>> 둘다 아이디까먹음 리세계 두개>> 가챠용으로 가끔 접속...
-
이런 비교 맞나요?
-
공군 선택 2
이런 거 물어볼 때가 마땅치 않아서 ㅠㅠ 여기에 올려봅니다. 댓글이나 투표해 주시면...
-
노베기준
-
더 필요한 거 있어요??!!!? 원래는 이걸로 깎음요. ,.
-
지거국 0
지거국 12명뽑는학과 점공11명중에 3등인데 1,2등 다 빠지는사람인데 느좋인가요?...
-
둘 다 합격하면 어디 가세요?
-
영어1등급 2
생각할수록쓸모가없는듯 영어2 받는 대신 미적 1컷 84해주면 좋겠다 ㅠㅠㅠㅠ 성적표ㅈㄴ궁금하네
-
2시간 뒤 폭파 예정. 편하게 상담 ㄱㄱ 이제 교재 써야 돼서 당분간 못 들어올 듯 합니다.
-
ON 3
IN 치지직
-
빙과도 케이온도 러키 스타도 다 너무 평화롭기만 해서 두근거림이 없어
-
두 개까진 안바란다 이과 자존심을 지켜라
-
무엇이라고 생각함? 메디컬 급의 극상위권을 제외한 구간에서의 성적 정체
-
미적 89 81 74 기하 92 84 77 확통 97 89 82
-
사실 굉장히 적은 작품찍고 많이 맞춤 ㅇㅈ좀 최저 가채점 낙지 텔그
-
인하대 가능? 1
인하대 공대 가고 싶은데 내일 세종대 지구자원시스템공학 논술 있어요 인하대에서...
-
둘 다 합격하면 어디 가세요?
-
도깨비 재밌음? 1
듣기만 하고 본 적이 없음 정보) 도깨비는 고대국어 시절 "도조가비" 정도로 불렸을 수 있다
-
맛있는부위에 적당한 양념으로 만든건 저도 좋아하는데 대부분의 제육이 뻑뻑한 부위에...
-
내년부터는 왕복 5시간 통학을 하기로 했다
-
일단 6,9모 성적 44인데, 11수능에 48점 1등급으로 올라왔습니다. 적생모...
-
놀랄 노 자네
-
수학 후기좀여 3-1,3-2 답 대조해봐여 1~2-1풀었는데 3번도 맞으면 약학...
-
언매 91 백분위 92 미적 92 백분위 96 한지 48 백분위 96 사문 47...
-
등장 7
ㅎㅇ
-
국어 화작 81 0
국어화작 공통만 틀린 81점인데 3등급 될까.?0
-
진학사 미적 1컷 86으로 잡혀있는데 88은 모두 다 1등급으로 찍히나요? 88에서...
-
일반고 계적 0
고대 자연 계적에서 일반고 합격이 13퍼던디 얘넨다 갓반고임? 서울대 10명씩 가는 학교는 되나?
-
26년도 수능을 준비하는 입장인데 의대 이슈때문에 너무 쫄리네요 2
26년도 의대 안뽑거나 확 줄여버리는거 아닌지 ㅠㅠ 흑흑 ㅠㅠㅠ
-
설대 어디까지 ㄱㄴ할까요? (설대식 416.10) +) 이번에 포공에서 수능 같이...
-
ㅈㄱㄴ
-
상상할수 있는 최악의 백분위인데 자연대로 연고대 가능한가요?! 화미영생지 순입니다
-
코 풀고 엄청 큰 누런 콧물 나오니까 쾌감 미침;;
-
비닐도 안 뜯은 프로모터 택포 1.5에 팔아요! 원가 28,000 10분 내에 쪽지...
-
이해 안 감뇨
-
1년 다니고 군대 갔다가 오면 다들 취업/전문직 진입 고민/전공 공부 고민하고 있고...
-
ㄹㅇ..
-
모고 풀 때 수학 4점 문제에 벽을 느끼고 있습니다… 수학 4점 문제 잘 푸는...
-
어미 '-지'가 붙으면 반의어가 되는 것 같아요
오른쪽은 잘 했는데 왼쪽 해석이 잘못됨
저 왼쪽은 +-(n-3)(n-5) 중에서 아무거나 선택해서 가도 만족하잖슴
Sn= +-(n-3)(n-5)끼리 와리가리 쳐도
진짜 딴지걸려는 게 아니라
궁금해서 여쭤보눈 건데요
본문에 작성자분이 쓰신 것처럼 1번에서
(n-3)(n-5) 함수가 구간 (3, 5)에서
x축 아래로 내려가는데
|Sn|은 0보다 같거나 크니까
구간 [3, 5]에서 정의 못하는 게 맞지 않나요?
작성자 분이 맞는 줄 알앗는데
왼쪽식이 항등식이라면 작성자분처럼 왼쪽식은 (3,5)에서 정의될 수 없습니다 애초에 좌변이 절댓값이 붙어있기에 우변도 0이상이어야 하므로 값이 음수인 (3,5)에서는 정의될 수 없는거죠
만일 항등식이 아닌 방정식이라면 얘기가 달라지긴 하죠
제가 조건을 빼먹었슴돠…저거 수열합이라서, 모든 자연수 n에대해 성립이에여
+ 제 말의 의도는 방정식이 아니라 항등식이라는 의미입니다… 다른 조건 더 있었던것 같아요
*구간 (3, 5)로 수정
답변 감사합니다앗!!
1번이 함수가 하나로 결정이 안된건가요??..이거 왜이렇게 헷걸리죠..ㅋㅋ
1번은 갈아타기함수임
함숫값이 0되는 지점에서 +- 둘중 하나 선택
아 연속조건이 있으면
1,2번이 얼핏 처음보면 똑같을 거라고 생각했던게, 절댓값 없애면 플마 붙으니까, 엥 같나 싶다가, 두번째는 많이 본 형태라서 납득이 되고, 첫번째가…갈아탄다는 말씀이 어떤 느낌인지는 알겠는데, 결국에 그래프로 나타낼때, 대칭으로 두개 그려주고 문제조건에 맞게 선택하면 되는건가요?
이해하기 편하게 Sn을 f(x)라 두면
문제조건에 f(x)가 연속이라면 f(x)=0되는 x의 값에서
함수를 갈아타야되요
만약 f(x)가 0이 아닌 지점에서 갈아타버린다면
갑자기 함수가 붕떠서 연속이 깨져버려요.
이와 비슷한 문제로는 작수 12번이 있으니까
꼭 한번풀어봐요!
그렇네요..그 적분문제 공부를 안했어서 현장에서 어떻게 할지 몰라서 헤맸었는데, 똑같은 표현이었네요 해결완료 감삽니다
모든 자연수에서 성립하려면 4일 때도 성립해야 되는데 그럼 |S4|= -1 이라는 모순이 발생하므로 만일 왼쪽 식이 문제의 조건으로 나왔다면 문제가 오류인 것 같고 작성자분이 임의로 쓰신 식이라면 n=4에서는 성립하지 않는 식입니다
말을 애매하게 써놧네요..정의가 아니라 성립으로 바꾸면 얼추 맞을듯 하고, (3,5)사이에서는 함수를 하나로 결정할 수 없는게 맞나요?
왼쪽) (3,5)에서 정의 못 함, 나머지 값에선 Sn이 우변 함숫값의+-로 가질 수 있음
수열이니 n= 4에서만 안 됨