칼럼) 오비탈 n축 (당신이 화1에서 말렸던 이유) (feat. 좌표평면)
게시글 주소: https://i9.orbi.kr/00065943755
선 좋아요 후 감상
22수능까지의 화1과 23,24수능의 화1의 결정적인 차이는
바로 주양자수, 오비탈이었습니다.
23수능 11번
이 문제 이후로
각종 사설 문제에서 괴랄한 주양자수, 오비탈 문제가 많이 나오기 시작했습니다
특히 n+l+ml=3인 오비탈에 있는 전자수<<<이런 조건들도 나왔고요
이런 문제들이 화1을 극악의 타임어택 과목으로 만들었습니다.
동시에 저런 문제들을 얼마나 잘 넘기는가가
화1에서 주요 이슈가 되었죠.
2,3페이지, 특히 2페이지에서 저런 문제들 때문에 말려서 시험 운영이 꼬인 적, 다 한 번씩은 있으실 겁니다.
저도 그랬고요.
그래서 '이런 유형의 문제들을 쉽게 해결할 수 있는 방법은 없을까?'라는 고민을 계속 했습니다.
첫 번째 방법은 반복해서 나오는 조건들을 외우는 거였습니다.
하지만, 낯선 조건이 하나라도 나오면,
"어 이거 외운 거에 없는 건데?"라고 당황하면서 오히려 더 말렸죠.
결국, 키는 '누가 머릿속에서 바로바로 조건에 맞는 결과를 떠올리느냐'인데,
이걸 누가 모를까요...
그게 됐으면 진작 됐겠지...
그럼에도, 어떻게든 방법을 찾아야 했습니다.
그래서, 생각해 낸 게,
1. 조건에 맞는
2. 그런데 일반화된
3. 시각적인 생각의 틀
을 만드는 것이었습니다.
생각해보면,
합성함수에서 많이 쓰는 스킬인 n축,
윤도영 선생님의 matrix
모두 일반화된 틀을 요구하죠
그리고 저 두 스킬은 정말 유용하고요.
시각화의 관점에서는 타의 추종을 불허하는 스킬들입니다.
그래서 이런 생각을 해봤습니다.
일단, 주로 나오는 조건이 n하고 l이니까, 둘을 변수로 하면서 시각화하는 방법은 없을까?
저희가 가장 많은 쓰는 틀이 있죠.
"좌표평면"
n을 x축으로 두고, l을 y축으로 두면 어떨까?
일단 1s부터 3p까지의 오비탈을 좌표평면에 모두 표시해보았습니다.
자 여기에 n+l이라는 조건을 적용하려면?
n+l=k 꼴의 직선을 표시하면 되겠죠.
n+l=1,2,3,4를 표시하면 다음과 같습니다.
n-l의 경우는, 기울기가 1인 직선을 표시하면 되겠죠.
이러면 n+l, n-l값을 일일이 외우지 않아도 손쉽게 머릿속에서 떠올릴 수 있겠네요
자, 이제 ml이 문제입니다.
3차원으로 구현하는 건 오히려 머릿속으로 떠올리기 힘들기 때문에 전혀 실용성이 없죠.
그래서 그냥 2차원 좌표평면에다가 우리가 아는 오비탈 전자배치를 넣었더니, 훨씬 더 낫더군요.
좀 더 시각화해보면, 다음과 같이 나옵니다.
ml값을 색깔로 구분하면 다음과 같습니다.
별거 아닌 것처럼 보이지만,
저는 ml=0인 거 계산할 때 무의식적으로 s 오비탈을 빼먹는 경향이 있었어서...
시각화해서 나타내더니 좀 나아지더라고요
l+ml을 정리해볼까요? y좌표에다가 ml값만 차례로 더하면 되겠네요.
l-ml은 y좌표에다가 ml값을 빼면 되겠고요.
n-l+ml=2에 해당하는 오비탈을 한 번 찾아보겠습니다.
n-l=1, n-l=2를 먼저 찾고,
n-l=1에서는 ml이 1이어야 하니까 이 직선을 오른쪽으로 한 칸 옮기면 되고,
n-l=2에서는 ml이 0이어야 하니까 직선을 그대로 놓으면 되겠네요.
n-l=3에서는 ml이 0인 곳만 존재하므로 찾을 필요가 없고요.
그러면 이렇게 나오겠네요.
뭔가 이 과정이 번거롭다는 생각이 드실 수도 있는데,
이거 그냥 직선 쓱싹쓱싹해서 조금만 이동시키면 바로 시각화가 되니까 시간을 줄일 수 있겠죠.
실전에서는 좌표평면을 일일이 그리기가 너무 번거로우니까,
다음과 같이 약식으로 나타내는 게 좋겠네요.
저는 수능에서 이 스킬을 쓸 때, 그냥 저거 하나만 그리고 머릿속에서 계산해서
오비탈 문제를 풀 수 있었던 거 같습니다.
자 이제 이걸 이용해서 9모 7번 문제를 풀어보겠습니다.
1) n+l부분에서 기울기 -1인 직선 3개 그으면
1과 2인 부분은 하나만 나오니까 나:2s, 다:1s인 건 알 수 있을 거고요
2) 두 번째 조건에 의해서 가: 2p(-1),
3) 세 번째 조건에서 l+ml이 (라)가 가장 크다고 했으니 y좌표 값이 더 크면 되겠네요.
(라)도 확정이 됩니다.
6모 15번 문제도 풀어보죠.
두 번째 조건을 정리하면 (나), (라), (다)의 x좌표 대소관계를 정리할 수 있겠네요.
첫 번째 조건에서 (나)는 아무리 커봐야 2라는 것도 알 수 있고요.
x좌표에서 (나)>(다)이므로 (나)가 2s, (다)가 1s임을 알 수 있습니다.
(라)의 ml값이 (나)보다 크니까 1,
세 번째 조건에 의해서 (가)의 ml값이 -1이므로 정리하면 다음과 같습니다.
자, 이제 마지막 수능 문제입니다.
1번 조건) n-l은 (가)>(나)이다.
일단 n-l은 1이랑 2밖에 없으니 (가)는 2s임을 확정지을 수 있겠네요.
2번 조건) l-ml은 (다)>(나)=(라)이다.
l-ml값은 y좌표에서 ml 값 차례로 빼면 되니까 다음과 같이 표시하면,
두 번 이상 나오는 값이 0밖에 없으니 나와 라의 후보를 좁힐 수 있겠네요.
3번 조건)(n+l+ml/n)은 (라)>(나)=(다)이다.
이제 세 번째 조건은, 주어진 식을 1+(l+ml/n)으로 변형할 수 있고,
l+ml/n값이 동일한 경우가 0밖에 없으니까 l+ml값이 0인 것 중에 (나)와 (다)가 있다고 하면 되겠네요.
주어진 것을 모두 정리하면 다음과 같습니다.
글로 일일이 설명하느라 복잡해보일 수 있습니다.
하지만, 간결한 시각화라는 특성에 주목하면, 그 효과는 결코 적지 않습니다.
(그냥 그림만 그려서 직접 정리하면 느끼실 거에요.)
제가 며칠 전에 과탐 시험지 운영에서 어려웠던 점이 무엇이었는지 제 글에서 물어본 적이 있었습니다.
근데, 정말 공감이 되는 댓글이 하나 있더라고요.
오비탈이 안 보이면 한없이 안 보인다....정말 공감되는 말입니다.
그냥 머릿속으로 때려맞추는 게 더 빠를 때도, 가끔은 있을 겁니다.
근데, '시각화된 틀'을 사용한다면, 한없이 안 보이는 현상은 거의 막을 수 있지 않을까요?
실제로 저는 6모 양자수 문제에서 한없이 안 보이는 현상을 겪었습니다.
그때는 이 스킬을 만들지 않았을 때였으니까요.
하지만, 수능에서는 한 번도 막히지 않고, 바로 해결할 수 있었습니다.
제 수능 화1 1등급은 이 스킬이 아니었다면, 불가능했을지 모른다고 해도 과언이 아닐 겁니다.
화1을 시작하시려는 분들,
이 스킬, 잘만 단련시킨다면, 적어도 후회는 절대 안 하실 거라고 장담할 수 있습니다.
다음 칼럼은
'나는 어떻게 이러한 스킬을 체화하였는가'로 찾아뵙겠습니다.
감사합니다.
0 XDK (+1,000)
-
1,000
-
추합이면 그래도 ㅇㅈ 하겠는데 불합이 뜬다는건 아직도 표본이 안 찼다는 소리인가요?
-
관련 글에 댓글로 이거 달았더니.1년 정지 당했어유... (기존에 정지 당한적 X,...
-
쎈 뭐부터 풀어야할까요..
-
인터넷만 함?
-
원순열 0
시발점 확통하고 있는데 해야되나요??
-
여대 약대 (이화x, 숙명x) 2학년 다니는 중인데 학교 시설이라든지 수업...
-
연대 과 0
연대 전기전자공학부랑 디스플레이융합공학과 중에 뭐가 더 나을까요??
-
그래프 직관 키우기는 역시 한완수햄
-
하
-
학고재수 감안하고 재종ㄱㄱ하려고 하는데... 시대재종 가도 ㄱㅊ을까요?ㅜㅜ...
-
시급 2.5만 받는다 매우매우 저렴
-
둘다 안정카드고 둘중 하나 쓰려하는데 여기붙으면 반수한다 하시면 어디가 나을까요??
-
수능 영어 3등급인데 영어영문가서 적응할 수 있을까요..?
-
영화ㅊㅊ해주세요 5
감명깊게 본 영화 뭐 있으신가요 액션 특히 좋아하지만 영화는 가리지않고 다 좋아해요!
-
ㄹㅇ 정신병 오네 전체적으로 좀 짠거같긴 한데 접수할때 되면 앞에 많이 빠질까 아님...
-
정병훈이 도표적분법 쓰지말라고 해서 그적미적인가 하고 있었는데 한완수에 도표적분법...
-
한덕수 탄핵 때 ‘씨익’ 웃은 이재명…“소름 끼쳐, 해명하라” 與 반발 3
李, 韓 탄핵 항의하는 여당 뒤로 웃으며 퇴장 주진우 “민주당 민낯 보여준 역사적...
-
내신때도 기벡 확통 유기했어서 쎈은 풀리는데 스텝2에서 벽느낌..
-
여행갈거임 3
말리지마셈뇨
-
낙지 궁금한점 4
자전이 최종컷에 비해 더 점수가 높은데 왜 학부는 6칸이고 자전은 5칸임뇨?
-
잘 몰라서 어쭈어봅니다 사탐을 변환점수로 바꾸어서 계산을 한다고 나와있으면 그냥...
-
텔그 영상 0
보시는 분들 잇음? 1개도 안봣는데 보면 도움 됨요?
-
30일에 이월인원 뜨고 그때부터 보는 진학사가 진짜인 거 실화인가 ㅋㅋ
-
정치글 썼으니까 지급함 못참겠다 ㄹㅇ로
-
아무생각없이 따라갈수있는분 계실까요???
-
재수고 아예 노베는 아닌데 유전을 너무 못해요 한종철이 나을지 박선우가 나을지......
-
저녁 ㅇㅈ 5
ㅋㅑ
-
연대로 가면 아마 생명과학이나 화학쪽일 것 같습니다 지방약은 아마 ㄹㅇ 끄트머리 대학교 정도?
-
554써도되나 0
인문 중중중임
-
+1 됐다 -1 됐다... 벌써 다음주가 원서 접수라니 +서울대 문과 표본도...
-
하나당 떨어질 확률이 0.7 다 떨어질 확률 (0.7)^3=0.343 따라서...
-
⡀⡀⡀⡀⡀⡀⡀⡇⣿ ⡀⡀⡀⡀⡀⡀⡀.⣗⣚ ⡀⡀⡀⡀⡀⡀⣾⣓⡻⣷⡀⡀⡀⡀⡀⣀⣀⣀⣀⡤⠖⠲⢦⡀...
-
맞팔하실분..! 4
여러분들과 친해지고 싶습니당
-
과거에도 정치인이 유명세를 바탕으로 메세지보다 메신저에 집중하게 했던 사례가 없던 건 아니지만 8
이젠 그냥 아예 대놓고 굿즈 판매하고 저러고 있잖음 ㅇㅇ 정치인은 정책 결정하고...
-
26요청) 수능성적 남의이름으로 발급받는 허점 제보 24
수능 영문 성적표를 발급받을 수 있는데, 이 수능 영문 성적표를 발급받기 위해서는...
-
김승리 김동욱 0
문학 김상훈 독서 김승리 vs 김동욱 고민중입니다
-
간호는 영어를못봐서 고대안정같구요… 전자를 고민하는이유는 제가 미국 시민권이 있어서...
-
약대는 개뿔이... 중경외시나 가면 다행인데 기분이 좋은 동시에 내 미래에 대한 불안감이 좀 드네
-
보닌 오늘 한일 1
이로치 레쿠자 잡기 끗
-
술 마셔야지 6
호가든 애플
-
헤응하읏헉헉 3
-
지금까지 수학 내신은 학원 다녔고 3~5정도 떴습니다 그래서 개념은 알고 있는거...
-
중앙대랑 경희대 반급간차인데 이정도면 두급간 차이 아님요? ㅋㅋㅋ 소신 쓸데가 없어 ㅡㅡㅡ
-
늙엇나벼..
-
가군 고경제 고대식 669.66, 진학사 5칸 추합(추합 첫번째), 텔그 64퍼...
-
콘서타 또 너야??? 45 먹으면 더 심해지겠지......
-
일어나서먹은거 2
햄버거한세트 자기전에대충먹고 일찍자고일찍일어나야겠다
-
님들은 뭐가 좋음
-
하지만 취업하면 갔다버릴계정인데...
지나가겠습니다
전자 수 분수조건 같은 경우도 이 틀을 이용하면 쉽게 풀 수 있습니다.
직접적으로 도움은 안 되지만, '일정한 틀'이 있다는 것만으로 훨씬 더 안정적이고 효율적인 풀이가 가능할 겁니다.
만약
합성함수 N축인줄 알았으면 7ㅐ추 ㅋㅋ
그래도 감사합니다
오랜만에 보네여
그냥 화1 이렇게까지 몸비틀면서 할시간에
생지하고 대학가는게 맞는듯 합니다 ㅋㅋ
지구를 내신으로 안 했어서...ㅋㅋ
이런거볼때마다 화학 재밌어보임
어렵긴한데 ㅋㅋㅋㅋㅋ 하면안되겠지
하면 꿀이에요
화학 유기중인데 다시 시작할때 참고할게여
수능 화학은 대체 어떤 과목일까요…
GOAT
오비탈에 n축...? 파급효과 미쳤다
오비탈에서 막혔었으면 화1 계속 했을텐데..
시각화 좋네요 땡큐
ㄷㄷ 귀하신 분이 누추한 곳에...
와 필수이론에서 괜히 그래프 여러번 그려보라한게 아니구나..
ㅋㅋ..
안녕하세요 이거 보고 내년 지학으로 바꿨습니다
지나가던 물지러입니다. 계속 지나갈게요~
작년에 뜨길 잘했지 이게 뭔 고생이냐~
화1은 할게 못됨.. 타임어택 진짜 벽 느낌
저런 문제를 왜 만드는걸까,,,
화1 문제보고 투투하기로 했다
어우,,, 진짜 이런문제를 왜만들까,,,
이거보고 지학하기로 결심했습니다..
물지입니다
대가리박고 지나가겠습니다
늦게나마 봤는데 글 감사합니다 연습해볼게요