이거 발산임 수렴임?
게시글 주소: https://i9.orbi.kr/00067239090
여기서 괄호가 무슨 역할을 함?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
Hy 견명조 아님??
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
오늘부터 연고다 스발
-
제곧내
-
누구한테 받고싶음?
-
다들 갓생인가봄
-
하루종일 점공만 보던 폐인 인생을 살다가 오늘 하루 해외 여행가서 잊고 있었는데 새벽 4시에 소식 알게됨 2
새벽 4시에 연세대 노문 붙은거 알게더ㅣㅁ 땅바닥에서 친구들이랑 껴안고 염병이랑...
-
아. 4
.
-
표점 5점이면 한두문제 차이인가….
-
1트 더 할지 고민됨 12
작년 성적이고 올해 성적임 수능은 이렇게 두 번 봤는데 나이가 좀 있음…...
-
우울할땐 우웅해 2
우웅
-
ㅈㄱㄴ
-
현우진 드릴드 3
왜 기하없는데 대체
-
ㅈㄱㄴ
-
솔직히 기우에 가깝겠지?
-
야식을 먹어 0
몬참아
-
소은이고 뭐고 0
제 여친이나 보고가세요
-
항상 불안해 1
하루에 공부를 얼마나 많이하고 얼마나 많이 배웠는지와는 상관없이 항상 불안합니다...
-
국어 전공자 혹은 국어황분들 하위 개념 상위 개념 도와주세요! 5
물리는 수학의 하위 개념인가요? 아님 물리가 수학의 상위 개념인가요? 또 지구,...
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
20대후반 3
sky공대 입학 어때
-
에휴..
-
연대 첨단컴퓨팅 0
이번에 신설된건가요?? 작년 추합보려고 하는데 없길래 예비 몇번까지 돌까요
-
everything's gonna be alright 8
웃고 싶을 때는 웃어줘
-
신명중명조는 도대체 어디서 가져오신 겁니까.. 아무리 찾아도 전 안보입니다... ..
-
일찍 자러갈게요 9
제가 다시 돌아오면 사람이 아니고 개입니다
-
ㅅㄱㅈㅁ
-
처음 보는 지문이여도 화자의 의도가 어떤 지와 어떠한 이야기를 하고자 파악이...
-
오르비는 오늘 그만하고 12
액상좀만피고잠 ㅂㅂ
-
현역 때 국숭세단이 적정이었는데 재수 땐 연대!! 총 4급간 올렸네요 헤헤헤 기분좋아요
-
발표를 기원하며 6
줄여서..
-
공군입대 시기도 그렇고 판을 깔아주니 도전 안 해볼수가 없네 없는 동력이라도 끌어써야하나
-
약해 ㅋ 1
오르비 내꺼
-
성대 나군을 보면 22,23년보다 작년입시에서 충원율이 확 떨어지던데 그런 이유가...
-
국어 과외 0
국어 과외하고 싶은데 과외를 받아본 적이 없어서 과외가 어떤 식으로 이뤄지는지...
-
이번에 컷 몇일거같나요
-
뭐임 1
좋아요 개많이 받았네 이게 맞나? ㅋㅋㅋ
-
ㅇㅇ..
-
별거 없네 ㅋ
-
3시 전엔 잔다 1
한다면 하는 남자야
-
가능성 있을까요?
-
오댕이>오리비>>오르비로고>>비둘기>>>>>>>>>>>라봉이
-
근데 사탐은 4
일단 글씨가 많으면 실전에서 압박을 받을 수 밖에 없는거 같음...
-
하 짱깨새끼들
-
ㅂㅂ 6
왕자 잘게 굿밤
-
와진짜뒤질거ㅏㅌ네
-
[앵커] 원래 설 연휴 이후 헌법재판소 출석을 준비했던, 윤석열 대통령, 앞당겨...
인접하는 두 수를 하나의 항으로 묶어 줘요
근데 수렴발산여부는 어떻게 알죠?
오른쪽 급수는
(½-a) + (a-b) + (b-c) + ...
이런 꼴이잖아요? n번째 항이 (n/n+1 - n+1/n+2)라고 할때 n번째 항까지의 합은
(½-a) + (a-b) + ... + (n/n+1 - n+1/n+2) = ½ - n+1/n+2가 되고
저걸 n이 무한히 커지는 극한을 취해 보면 -½이 되2ㅛ
제n항까지의 합을 살펴 보면
왼쪽 급수는 어느 순간 마지막 항이 음수일 수도 있고 양수일 수도 있는데
오른쪽 급수는 언제 보더라도 항상 (양 음)이 더해짐
그럼 오른쪽 급수 수렴값은 어떻게 아나요?
위에 썼음
수열 a_n의 합을 S_n이라고 할 때
급수 S_n이 수렴한다면 일반항 a_n은 0으로 수렴한다
이건 알고 계시죠?
이 명제의 대우 명제를 취해 보면 일반항 a_n이 0으로 수렴하지 않는다면, 즉 발산하거나, 수렴하더라도 0이 아닌 값으로 수렴한다면 급수 S_n은 발산해요
근데 저기 사진에서 왼쪽 급수는 발산하잖아요? 홀수 항은 +1, 짝수 항은 -1로 수렴하니까.. 그니까 왼쪽 급수는 발산이라고 바로 판단할 수 있음
근데 어떤 명제가 참이라고 해서 그 역이 참이라는 보장은 없잖아요?
그래서 일반항 a_n이 0으로 수렴한다고 해서 꼭 S_n이 수렴하는 건 아님 그래서 실제로 값이 어떻게 되나 조사를 해줘야 됨
사진의 오른쪽 급수는 일반항이 0에 수렴하잖아요? 그러면 바로 수렴이라고 판단하는 게 아니라, 수렴일 수도 있고 발산일 수도 있으니까 조사를 해줘야 됨
와 감사합니다...