극한 장난질(자작문제)
게시글 주소: https://i9.orbi.kr/00067779391
개인적으로 재밌는 문제입니다. 야무지게 풀리는 것 같은데 한번 풀어주시면 감사하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나는 그딴 생각을 하는 인간들은 대체 뭘 하고싶어하는지 모르겠다 의대 졸업해서...
-
3년 내내 서울대약대만 보고 산 사람입니다.. 수시로 수도권약대를 갈 거 같긴...
-
5시간잤더니머리가전혀안ㆍ돌아간다 할거존만은데 걍 10시반에 자???ㅜㅜㅜㅜ
-
결국 못 참고 2
빨간 어묵을 시켜버렸다
-
https://orbi.kr/00070156731 과제하다 심심해서...
-
비트코인의안락사 13
인류의구원...
-
지금부터라도 공부해서 수능보고싶은데 뭐부터 공부해야 할까요? 너무 막막하네요
-
했으면 몇일 정도 조기발표함?
-
마스숏 냅둘걸 9
진짜 인간지표냐 나..
-
목표는 약대(아무 약대나 상관없음)임 사탐런 어케 생각하세요?
-
과탐이던 사탐이던 예2처럼 탐구는 암기적 요소가 꽤 있으니 수능 몇 달 전...
-
여자들이 생각하는 (잘생긴)찐따남 유니콘이 높은확률로 INTP성격임
-
너의 플레이를 보여봐라
-
잘나서 뽑을필요 없어도 무조건 뽑는게 좋음 그래야 내가 졸업을 함
-
덩치도 사람만하고 피부도 질겨서 천적도 거의 없대요
-
뭐가 이득인가요?
-
질문글이 많이 올라오는구만
-
ㅅㅅㅎㄱㅅㄷ 4
스시한개샀당 맛있게 먹어야지
-
예비 고3 입니다. 2025 수분감을 사서 어느정도 풀었는데, 2026 수분감도...
-
누가 뭐 함?
-
44443 0
수원대 공대는 가려나 논술 떨어지면 정시성적으로 가야할거같은데
-
한 대학에 소속감과 자부심을 가지고 행복하게 살 수 있는 사실이 너무 부러움
-
시대인재 재종반 5
현 고3 언매 미적 물1, 지1 선택인데 재수하면 언매, 확통, 사회문화,지1로...
-
통합 폐원 되었다는데 어떻게 된건가요? 어디로 합쳐진건지?
-
니들에겐 단순한 사직이지만 누군가에겐 밥줄이라고 전공의 노예들 도망가니까 보건노조...
-
깡따구 ㅁㅌㅊ임뇨
-
부엉이인형안고있는중 15
시대에서얻었것중에서 가장값진거임 꼬옥안고있는중
-
현 고2 (예비 고3)입니다. 학교에서 내신으로 화생지 하고 있는데 지구는 공부...
-
이젠 대충 먼말인지도 이해됨뇨
-
인팁에대하여 4
인팁의 눈빛 ㅡ,ㅡ ㄹㅇㅋㅋ
-
정상지능이면 누가 대학병원 설거지 하겠노 ㅋㅋㅋㅋ
-
수능 망한 거 후폭풍 옴
-
오르비고닉들이랑 9
현실에서 만나면 어색할까 그래도 1년가까이 본 사람들인데
-
7ㅐ추로 우회해서 쓰세요
-
내취향 여캐일러 27
여캐일러 자주 올려주시는분들 참고해주세요..이런거 위주로 오네가이시마스
-
고등학교 자소서 쓰는데 진로에 대한 노력을 써야 하는데 아직 많은 노력을 하지않아서...
-
그렇구나 대충 일주일 후에 오르비는 울음바다가 되겠구나 3
한탄글 및 누구누구를 저격하는 글(컷 이상하게 추정했다고) 그리고 몇 명은 웃으면서 혼란하겠다
-
토요일에 한양대 오후1 치고 온 현역 뉴비입니다 .....매우 쫄리네요 쨌든 딴에...
-
은근 최신 기출이 많아서 불안하네요
-
전 이번에 지구과학 + 사회문화 본 혼종입니다@.@ 한양대, 경희대처럼 과탐 가산점...
-
딱최저임금만큼돈버는중
-
담배를 후 3
방이 담배로 가득
-
Was interesting?
-
근데 과탐이 개쫄려 백분위 나락갈까봐
-
시대 강기원 선생님과 김성호 선생님의 미적 수업 스타일은 어떻게 될까요? 그리고...
-
이제 거의 일주일 남았네...
-
요즘처럼 교육과정 개편으로 작업량이 많을 때... 쫙 복붙하고 싶은 충동이 자주...
-
님들 땅에 떨어진 거 몇 초 안에 주워먹는 게 ㄱㅊ음? 23
전 그냥 길바닥에 떨어져도 10초 안에 주우면 ㄱㅊ다고 생각함
시간이 시간인지라.....머리가 안 돌아가서 오늘은 포기......
ㅋㅋㅋㅋ 시간 나실 때 풀어주시면 감사하겠습니다
넵....님 대단해요...모의고사 혼자 만드려니까 죽겠던데
ㅋㅋㅋ괜찮으면 제 거 검토 부탁드려도 되나 싶네요
수시생이라 슬프네요 ㅠ 1학기만 끝나면 최저 맞춰야하니 공부하는겸 풀어드릴 수도 있을 것 같습니다
g(0)=0 아닌가요 그냥..?
아닙니다 조금만 더 고민을 해보시죠
첫번째 조건 양변에 limx->0 f(x) 곱하면 그냥 limx->0 g(x)=0 나오고 g(x) 연속이니까 g(0)=0인데 뭐가 잘못됐을까요..?
아 맞네요 죄송합니다 문제 수정해드렸습니다 다시 풀어주시면 감사하겠습니다
엥 님 몇 학년임?
고 3입니다
06임? 와 내가 05인데....대단하네요....멋있는 동생
최대값 갖는 g(x)=x^2+4
조건을 저렇게 바꾸니까 f(x)랑 g(x)가 같아버리네요 의도한건 g(x)가 일차함순데
혹시 g(x) 일차함수인 경우도 한번 구해보실래요..? 바뀐 조건으로 푸시면 되실 것 같습니다
근데 g(x)가 일차면 모든 실수 x에서 g(x)가 f(0)보다 작거나 같은게 되나요? 일차함수 치역이 모든 실수인데
아하.. 급하게 만들다 보니까 오류가 너무 많네요ㅠ 따로 봐야하는건데
'f(0)보다 f(x)가 크거나 같고 g(x)가 f(x)보다 작거나 같다' 이렇게 봐야할 것 같습니다.
오류 지적해주셔서 감사합니다
그렇게 하더라도 g가 지나는 한점 있어야 할거 같네요
g(x)가 함수 f(x)의 접선이라서 지나는 점 없어도 풀릴겁니다
수정 완료했는데 발문에 문제 없는지 확인 한번만 부탁드려도 될까요?
아 최고차항 계수
f(x) = ax² + 4 (a ≥ 1)
g(x) = ax - 1/4a + 4
g(0) = -1/4a + 4 ≤ 15/4