[이동훈t] 영원히 반복되는 구조+실전개념 (2106가18(나21))
게시글 주소: https://i9.orbi.kr/00067936218
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
수능 시험에서
영원히 반복되는 문항 구조,
과목은 다르지만
공통적으로 평가되는
실전개념에 대해서
알아보겠습니다.
전체를 모두 살펴보는 것은
한 개의 칼럼 글에서는 힘들겠고요.
(좀 더 많은 구조 연구+실전개념은
2025 이동훈 기출문제집에 수록된
실전 개념 설명 파트를
참고하시면 됩니다.)
21학년도 6월 모평 가형18 (나형21)
수학1 ㄱ, ㄴ, ㄷ 문제에서 평가된
문항구조+실전개념이
수학2, 미적분에서도
동일한 맥락에서 평가되고 있음을
함께 살펴보겠습니다.
본론 들어가실께요 ~!
힐 위 고 ~!
이 문제를 모두 읽고,
두 곡선을 그리고 나서
아래의 생각들이 바로 들어야 합니다.
(1) 문제에서 주어진 두 곡선을 그리자.
(2) 두 곡선의 두 교점의 x좌표가 모두 -1, 1 사이에 있고,
이차함수 y=-2x^2+2 의 꼭짓점이 (0, 2) 이므로
두 곡선을 바둑판(격자) 위에 그려야 한다.
(이때, 격자를 그리지 않으면 ㄴ을 기하적으로
해석하기 어려울 수 있음)
(3) ㄱ. 사이값 정리
ㄴ. 기울기의 대소 비교 (& 기울기 1)
ㄷ. x1, x2 의 범위 & 2^x = -2x^2 = y 이용
위의 ㄱ, ㄴ, ㄷ에 대한 생각은
사실 그림을 그리지 않았어도
머릿속에 떠올라야 합니다.
어차피 평가하는 것이 정해져 있고,
이는 매우 전형적이기 때문이지요.
요컨대 ...
곡선 2개 -> 교점 -> 경계값(ㄱ), 기울기(ㄴ), 방정식연립(ㄷ)
이게 전광석화 같이
머리를 스치지 않으면
어찌 시험장에서 안정적인 만점을 받으리오 !
참고로
위의 설명은
2025 이동훈 기출문제집의
후반부에 수록된 실전개념에서
모두 다루고 있습니다.
그리고
위에서도 잠깐 언급하였지만 ...
ㄴ에서
y2-y1 < x2-x1
(필충)
(y2-y1) / (x2-x1) < 1
(필충)
두 점 (x1, y1), (x2, y2) 를 잇는 직선의 기울기 < 1(=직선의 기울기)
기울기가 1인 직선을 찾는다.
즉, 연결하면 기울기가 1이 되는 두 점을 찾는다.
는 격자를 그리지 않으면 잘 보이지 않습니다.
특히 3등급 상단~2등급 하단에서
좀 처럼 등급 안오르는 분들은 ...
점 찍어서 그래프 그리는 연습이
많이 부족한 경우가 많습니다.
이거 고치면
최소 3점에서 최대 6~8점까지
오르는 경우가 많으니 ...
그래프를 꼼꼼하게 그리는 연습을
좀 더 하셔야 하고요.
아래는 2025 이동훈 기출의 해설 입니다.
깔끔하죠 ?
ㄱ.
아래는
2025 이동훈 기출 수학1 평가원 편에
수록된 교점 처리에 대한
이론 설명입니다.
자 이제 사이값 정리가 적용된
미적분 문제를 하나 살펴보겠습니다.
10년 전 문제인데요 ...
이 주제에 대한 고전 이라고 봐야겠죠.
ㄱ, ㄴ, ㄷ의 문제 구조에 대해서도
두 개의 곡선 -> 교점(ㄱ)+방정식연립(ㄱ) -> 사이값 정리(ㄴ)
구조가 9년 사이에 바뀌었나요 ?
(순서 정도는 바뀔 수는 있어도 ...)
똑같죠 !
수능은 ...
그냥 never ending, same story 거든.
나 같은 (연습을 많이 한) 사람은
함수 준 것, 문제 구조 보면
딱 보이거든.
어떻게 풀어야 하는지가.
여러분도 이렇게 하셔야 하겠고요 ...
이런 구조에 대한 이해가 없이는
수학을 잘 할 수는 있어도
수능 시험에서 고득점/만점 받는 건 쉽지 않은 일이죠.
그리고 평가원 기출은
(교사경 기출 포함해서...)
반드시 31 년 전체를 풀어 주어야 합니다.
최근 몇 년 간 ...
이렇게 하시면 수능 날 곤란할 수도 있으니.
아래는 맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄴ에 대한 해설 입니다.
(수식을 이용한 해설 또한
2025 이동훈 기출에 수록되어 있습니다.)
수식 보다는
역시 기하적인 관점이
좀 더 출제 의도에 가깝다는
생각이 지금도 듭니다.
ㄴ.
아래는 2025 이동훈 기출 수학1에 수록된
볼록성+직선의 기울기에 대한
실전 개념입니다.
이 주제는 미적분에서
도함수/이계도함수의 관점에서
다시 다룹니다.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
보기 ㄴ에 대응되는 미적분 문제입니다.
차이점 이라면
볼록성+직선의 기울기 에
평균값 정리가 결합된 것 인데요.
이에 대해서는
2025 이동훈 기출 미적분에서
아주 자세하게 다룹니다.
아래는 위의 ㄷ에 대한 해설.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대한 해설입니다.
ㄷ.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대응되는,
이차함수의 대칭성을
이용해야 하는 문제 입니다.
대칭축에 대하여 두 점이 서로 대칭이다.
이 주제에 대한 문제는 워낙 많은데요.
그 중에서도 가장 이 주제가 잘 드러난 문제이고 ...
두 점을 서로 대칭이동시켜보는 연습이
얼마나 중요한지를 알 수 있습니다.
사실 좀 더 깊게 들어가면
곡선 위의 점의 이동 (평행, 대칭)까지
생각해주어야 하기도 합니다.
아래는 위의 문제에 대한 해설.
오늘 다룬 주제들은 ...
2025 수능에서 반드시 나옵니다.
라고 말한다면
굉장히 높은 확률로 맞을 것입니다.
이 주제들을 꼭 익혀두시고 ...
다른 주제들도 완전 정복 하시길 바랍니다.
다음 주에도 또 만나요 ~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
백분위 기준 확통 99 영어 1 한지 97 세지 98 일때, 대구한 문 닫고 갈...
-
진도 잘 나가네
-
유빈이 결국 잡혔네.. 11
유빈아카이브에서 다운 받고 나서 pdf나 한글로 저장한 후 인쇄하면 항상 엄청...
-
흐음 4
-
프세카 4일차 3
오늘 생애 첫 풀콤을 기록했다 엑스퍼트를 도전했지만 너무 어려워서 하드를 더...
-
여러분 장영진 꿀모 꼭 푸시고 이원준 브크 3세대 꼭 들으세요 2
기 습 찬 양
-
백분위 100 원점수 98 (문학 고전소설 틀림) 아무거나 질문 받습니다~
-
밤새고 차에서 자기
-
그럴리가 없는데..
-
배아파 3
ㄹㅇ로
-
잘자요 4
내유일한친구 오뿌이들 잘자요 좋은꿈꿔요
-
전년도 경쟁률이런것만 보이고 진학사에 지원한 수는 안보이는디 원래이런가요
-
졸리네 0
에휴
-
국어 100점 12
ㄹㅇ 어케함?
-
https://cognitivemetrics.co/test/CAIT_SS...
-
진짜광기는 4
태그에 #모바일 이 없는사람
-
ㅂㅂㅂㅂ ㅈㄴ 졸림
-
잘자요 8
모두 좋은 꿈 꾸세요
-
ㅈㄴ잘빠졌는데 3만원? 바로 산다
-
노력하자 4
열심히하자 언젠가는 되겠지 잘풀리겠지
-
흠...슬슬
-
1. 테-무에서 기존회원 신규회원 룰렛 이벤트함 2. 5만원 확정지급 링크 통해...
-
난 요즘 다 쓰고 남은 장작더미같음
-
3불이나 2불 1추합(5칸 끝자락)인 표본들을 대체 어떻게 처리해야함뇨?? 왜케 많이 보임???
-
걍 진짜 이 마인드 가지고 있으면 망해도 걍 자살하면 된다 생각하니까 부담이 없어짐
-
고대 교과우수 0
이거 따로 학교가서 학추받고 그런거 아니지??
-
밖에 나왔어요! 3
잠을 깰 커피를 사러 편의점으로 한걸음 앞으로
-
실패 반댓말은? 6
바늘승
-
문디컬 26수능 0
국어 백분위 99 영어1 고정이라 치면 확통 사탐은 백분위 어느정도여야 문디컬...
-
합격증 나오면 3
바로 학잠 사러 ㄱㄱ해야겠다 과잠 어케 기다리노 ㅋㅋㅋ
-
그냥 미니멀로 가야지 올해도
-
고등학생도 대학생도 아니네 12년만에 무소속 입갤
-
Diplomacy>> 이거 지금까지 발음을 '딥로메씨' 이렇게하는줄 알았음 오늘...
-
코로나로 2년이 삭제됨ㅋㅋ
-
이거 보고있으니까 이제 고등학교도 끝이라는게 실감이 나네요 학교계정 원드라이브...
-
가려면 사탐2는 어려움? 교차지원 이런거말고 무조건 공대
-
전 그렇게 생각해요 아님말구
-
할짓이 없을 땐 0
표본분석을 해보아요
-
하아 이 색히는 왜 글을 띄엄띄엄 써놔서..
-
방학동안 할 것 9
계절학기 c++ 수능경제 찍먹/금리공부 관심 개별주 유튜브로 찾아보기 kmo조합론...
-
아 잠 안와 2
그냥 오늘 밤 새고 내일 에너지 드링크 마셔야지 수능끝난고3이잖아 아ㅋㅋㅋㅋㅋ
-
노래 추천 5
유일하게 듣는 일본 노랜데 이거 영화도 봤는데 내용도 좋더라구요 수험생 맞춤형인듯
-
반갑습니다. 6
-
왤케 늦어지지..
-
어릴때 내가 생각하던 성인의 내모습은 이게 아니었는데 5
성인을 앞두고 있는 나 어디서부터 잘못된건지 모르겠어 06이 대체 왜 성인이 된걸까
-
안들어갈수가 없는 제목
-
우웅 5
우웅
-
프사 바꿨읍니다 2
곧 용산에 입성하실 그분으로
-
못살겠다꾀꼬리 3
ㅡ
-
와타시와 심심하다데스
감사합니다 도움많이됏급니다