[수학] 미적분이 확통보다 어려운 이유는?
게시글 주소: https://i9.orbi.kr/00067936245
안녕하세요
수학강사 이대은입니다.
날씨가 좋은데
중간고사 기간이라니ㅠ
그래도 남들이 놀 때 공부하면
남들보다 앞서간다는 느낌을 받아서
기분이 좋지 않나요?
전 이런 생각으로 스스로 위로하며
오늘도 2-3시간씩 자며 작업을 하고 있네요ㅠ
다들 200일만 더 힘냅시다!
자 그럼 본론으로 들어갈게요!
잠시만요!
본론으로 들어가기 전에
제가 진행하는 모든 수업과 글은
이미 상위권인 학생을 위한 글이 아니고
상위권에 가고 싶지만 뭐가 문제인지 모르는 학생을 위합니다.
그럼 이제 시작합니다.
오늘의 주제는
요즘 트렌드의 문제들이 어려운 이유
입니다!
많은 학생들이 말합니다.
"수1이 어렵다, 수2가 어렵다."
혹은
"미적분이 확통보다 어렵다."
뭐 개인마다 다르겠지만
미적분이 확통보다 어렵다는 건
아마 모두가 공감하겠죠.
근데 그렇게 생각하는 학생들에게
제가 묻고 싶은 건
왜 미적분이 확통보다 어려울까요?
단순히
외울 공식과 유형이 많아서
일까요?
틀린 말은 아니지만
이유의 전부는 아닙니다.
미적분이 확통보다 어려운 이유는
확통은 확통에서 배운 내용만으로 문제가 출제되지만
미적분은 출제할 수 있는 유형의 조합이 너무 많고,
미적분 자체의 지식만이 아닌
고등수학, 수1, 수2와의 융합이 많이 이뤄진다는 점입니다.
위와 같은 이유로
우리가 문제를 풀 때 어렵다고 느끼는 이유는
과목 자체가 어렵다기보단
다른 과목과의 융합으로 어렵게 느껴지는 경우가 많습니다.
예제를 통해 무슨 말인지
바로 확인시켜 드릴게요.
출처는
2023년 9월 13번
입니다.
문제부터 보시죠!
문제 자체는 워낙 유명해서
많은 학생들이 아마 아실 것으로 생각해요.
간략하게 풀이를 먼저 간략하게 소개해드리겠습니다.
구체적인 풀이는 글 마지막에 유튜브 링크로 걸어둘테니
궁금하신 학생분들은 영상을 시청해보세요!
이 문제는
함수의 증감상태가 메인 조건이므로
가 처음으로 드는 생각입니다.
이때 도함수를 구해보면
입니다.
자 여기서 핵심질문 들어갑니다.
결국 이 문제는
구간에 따라 나뉘어진 이차함수의 부호
와 관련된 문제인데
이 유형이 수학2와 어떤 연관이 있나요?
결론부터 말씀드리면
이차함수의 부호와 관련된 유형은
수학2와 직접적인 연관이 없습니다.
정확히 말하면
고등수학과 연관된 유형이죠.
그렇다면 이런 문제를 풀기 위해선
고등수학부터 다시 배워야 하느냐?
입니다.
당연히 다시 배워서 나쁠 건 없습니다만
한정된 200일이라는
관점에서 볼 때 절대 좋은 선택은 아니죠.
가장 현실적인 대안으로는
다른 과목의 유형이 나왔을 때
단순히 해당 문제 활용이 됐다는 내용만 공부하지 않고
이 문제에 어떤 근본적인 유형이 포함됐는가
그리고
이 유형은 풀이법이 어떻게 되는가
를 학습하는 것입니다.
위의 예제는
이차함수의 부호와 관련된 문제인데
주로 이 유형은 수학1에서 지수로그방정식에서 많이 나옵니다.
학생들이 지수로그방정식에서는
이 문제와 같은 풀이를 잘 떠올리지만
예제에서는 많은 학생들이 틀렸죠.
실제로 이 문제의 오답률은 70% 정도이고,
선지의 선택자 비율을 보면
찍어서 맞춘 학생도 상당히 많다는 것을 알 수 있습니다.
과연 똑같은 유형이
지수로그방정식에서 나왔다면
비슷한 오답률이 나왔을까요?
절대 아니겠죠.
이유는
대부분의 학생들이
특정 풀이법을 왜 써야 하는지 상세하게 모르고
그저
'지수로그방정식 나오면 이렇게 풀어~'
와 같이 배워서 입니다.
늘 나오던 형태인
지수로그방정식으로 나오면
많이 풀지만
예제처럼 새로운 단원과 융합되면
대부분 풀지 못하죠.
심지어 인강이나 n제 등에서
고난도 문제를 통해서만 공부하는 학생들은
문제가 어려워서 문제의 풀이를 이해하는 데만 힘을 쓰느라
어떤 도구를 쓰는지도 제대로 공부하지 않는 학생도 많죠.
절대 이런 방식으로 공부하시면 안됩니다!
단순히 어려운 문제의 풀이를 이해하고, 많이 경험한다고
그 이후로 어려운 문제가 풀리지 않습니다.
이 문제를 공부할 때 풀었다면
와 같이
가장 근본적인 상황에 대하여 풀이법을 학습해야
예제처럼 새로운 단원과 융합되더라도
유형을 인지하고 풀이법을 떠올릴 수 있습니다.
이렇게 근본적인 상황들에 대한 풀이법을 학습한 후엔
다음 단계의 공부법이 있습니다.
이 내용은 다음 기회에 전달을 하겠습니다!
오늘의 글은 여기까지입니다.
마지막으로 앞서 말씀드린 예제 해설영상 올려드립니다.
이 글이
공부를 해도 문제가 잘 풀리지 않는다고
느끼는 학생들에게 도움이 되었으면 좋겠네요!
다음에도 유익한 주제로 돌아올테니
좋아요, 팔로우, 댓글
해주시면 너무나 압도적인 감사하겠습니다!
마지막으로
5/4에 오르비에서 특강을 진행합니다!
주제는
하루만에 하는 함수의 극한 총정리
입니다!
수강신청링크:
https://academy.orbi.kr/intro/teacher/509/l
혹시 단과에 중간합류하여
1단원에 대한 완성도가 떨어지거나
빠르게 복습을 하고 싶은 학생들을 위해
준비했습니다!
자세한 공지는 다음에 정식으로 할게요!
정규반 수강신청 링크
https://academy.orbi.kr/intro/teacher/466/l
수학 공부법 1회 특강 신청링크
https://academy.orbi.kr/intro/teacher/503/l
공부법 특강 수강후기
1. https://orbi.kr/00067814750
2. https://orbi.kr/00067822140
3. https://orbi.kr/00067823604
수학강사 이대은
현) 오르비학원
현) 대치명인학원 중계
전) 여주비상에듀기숙학원
*2023, 2024학년도 수강생수 전과목 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하체 미친 7
개힘드네 다리에 주기적으로 힘풀리는거 억지로 붙드는중 집까지 또 한 20분 걸어야하는데 ㅋㅋㅠ
-
사실 안들어봄 들을 가치 있나용 강사 추천도 해줘 ㅜ
-
그래야만 한다
-
시발 말이 안 됨 ㅋㅋㅋㅋㅋ
-
보내주세요
-
내마지막신캐는에코임뇨 옵1에서 없데이트당하다가 옵2와서 접었는데 왤케 열심히 업데이트함뇨;;
-
예전에 파급n제 기하내고 내년부터는 다른과목도 출판한다고 들었는데 파급n제 출판안했나요?
-
빠대 50번 승리 뭐냐 ㅅㅂ
-
기차를 타야하나 2
렛츠고 애버랜드
-
ㄹㅇ버그임뇨
-
수학질문ㄴ 5
첫번째 식을 두가지방법으로 푼건데 어디서 잘못됐길래 답이 다르게 나온눈지 모르겠어요ㅠㅠ
-
더 중요한 사실 4
올해 페스페 애니 나옴
-
왜 댓이 하나도 없을까 궁금했는데 어설프게 잘 모르는 상태에서 잡아줬다가 글쓴사람...
-
해가짧아졌구나 7
해떠있었는데 동시에 비오는 이상한 날씨.
-
그런취향 아닙니다~~ 진짜로 안봄
-
혹시 가천대 E형 국어 답 알고 계신 분들 비교 가능 하신분들있나요??
-
얼굴>키인듯 6
키가 짱이라는 애들도 결국 얼귤따라가더라 키 커도 얼굴 못생기면 그냥 피하드라 몸...
-
"카구야님은 고백받고 싶어" 이거 보고 진짜 충격받음... 이거 만한 럽코를 보고...
-
고려대 사범은 어느 정도 성적대가 나와야하는지 궁금해요 물론 표준점수가 중요한 거라...
-
사진3장찍느라고제자리에서있는데눈물나옴뇨 날라갈뻔함뇨..
-
돈 아까워서 된다면 팔라고 함
-
기하인강은역시 3
정병호 근데이제기하하는쌤이없어서별로선택권이없음
-
ㅈㄴ 그립네 수영장씬이랑 크리스마스씬은 죽어도 잊지 못할듯
-
탕짬면 뜻머게여 4
ㅎ휴존맛탱
-
국어-90 수학-100 영어-2 생명-42 지구-47 표점 총합 407~409...
-
비버는 어릴 때보다 지금 목소리가 더 좋은 거 같다 싶다가도 3
비버가 어릴 때 불렀던 baby 들어보면 그때가 더 좋은 거 같기도
-
언매 2컷 0
언매 1틀 85 가능성 있을까
-
나와주셈뇨
-
국수는 먹는거지 범주파악 실패임뇨
-
내마위 ㄹㅇ 개쩌네 18
걍 이게 럽코지 ㅇㅇ...
-
이말투 꽤 중독성있음뇨 15
혼자서 밀고있는데 전염성이 꽤 강한거 같음뇨 뇨뇨
-
언미영물지 메가기준 91 95 1 98 98입니다 고속에서는 연대 산업공정도까지...
-
장사 안 해?
-
탈퇴할까...
-
국수쉬웠음 2
과탐은 어려웠어요
-
이거 ㅈㄴ 재밌는데 결말 때문에 은근 호불호 갈리더라 나만이 없는 거리도 그렇고 꼭...
-
뻥임뇨
-
노래 좋다.... 무한 재생 중
-
다이어트괴로움뇨 2
배고파서맛있는거먹고싶은데얼굴꼬라지보니까차마맛있는걸먹을순없음뇨결국샐러드임뇨
-
1980년대 후반 기준 상위권 지거국 전화기면 어느정도였나요?? 1
부모님 말로는 그 당시 부모님 점수로 서울대 농대는 가도 서울대 다른 학과는 못갈...
-
설명 탑재 없이 바로 컷당함 역시는 역시인가
-
오늘 점저 16
양 많아서 좀 남김
-
안녕하세요. 오르비 게시중단요청서비스 담당자입니다. 항상 오르비를 이용해 주시고...
-
특히 정법은 '이상 없음'
-
오전엔 박스 묶었고 오후엔 목재 옮겼다 그래도 목재 수가 적어서 1시간 반만에 끝남
-
홍익대 전화 0
우리 동생이 올해 홍익대 논술 봤는데 오늘 아빠랑 동생한테 홍익대 입학처에서 전화옴...
-
집앞편의점만갇다왔는데도 몸이벌써시려졌어요
-
설수의 23최종컷 397~398 24최종컷 413 설약 23최종컷 402 24최종컷...
항상 10번에서 14번대 틀리는데 너무 유익한거같아요!!
도움이 되었다니 다행입니다 :D
200일 파이팅입니다!
감사합니다 주말 잘 보내세요
엇 고맙습니다
힘들겠지만 파이팅하세요!
글 잘 읽었습니다. 읽다가 궁금한 점이 있는데 근의 분리가 뭔지 알 수 있을까요?
근의 분리는 고등수학에서 배우는 이차방정식 실근의 개수를 판단하는데 주어진 구간에서 실근의 개수를 판단할 때 사용되는 도궁비니다!
본인 체감: 미적분=확통<기벡
그런데 상대적으로 치면 미적분이 살짝 더 어렵긴 한데 저한테는 편했어요 ㅋㅋ 그런데 기벡이 문제긴 하지만.
ㅋㅋㅋㅋ맞죠 라뗴만 해도 세 과목을 다 했으니.. 그래도 이제 선택이니 부담은 덜었죠! 물론 곧 확통만 하게 되겠지만 ㅠ
등급 3후~2초 왔다갔다하는데 11~15를 빠르게 풀려면 뭘 해야하나요ㅠㅠ n제많이푸는게 좋을까요?
무조건 기출분석이 우선입니다!
기출분석이 완전한 이후의 n제학습이 의미있아요!
재수생이라 기출분석은 거의다 한 상태입니다,, 킬러문제만 좀 남았습니다
흠 기출을 어느정도 하신 상태라면 본인이 해당 문제의 풀이를 알아서 문제가 풀리는 것인지 아니면 쓰이는 도구별로 당위성을 인지히며 풀이가 이어지는지를 확인하시는 게 가장 증요합니다!