확률 잘하는사람좀... 평가원 문제 오류??
게시글 주소: https://i9.orbi.kr/00068464203
(문제는 2019년도 시행된 9월 모의고사 수학가형 18번임)
18번에서 (가) 확률을 구할 때 9개를 뽑아 순서에 맞게 나열하는 경우의 수 중
빨6 파1 노2를 뽑아 나열한 경우의수를 구하는 것인데 이경우 아무런 조건 없이 주머니에 빨6파3노3 있고
9개 꺼내서 빨6파1노2 뽑는 확률이면
해설지 풀이가 맞겠지만 이 경우 24점 먼저 획득하면 끝난다는 조건이 붙어있는데,
이 조건을 고려하면 전체 경우의 수가 변하지 않음?
(나)에서도 마찬가지로.... 해설지 읽고 해설 강의 아무리 들어봐도 이런관점 언급조차 안하네 내가잘못생각한건가?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
부끄러워서 2층에서 혼자 보고 옴 ㅎㅎ ㅠ
-
앞날이 어둡네
-
강기분이랑 같이 풀면 좋다는데 좋나요?? 이런건 잘 몰라서 ㅠ
-
다들밥먿ㄱ어 2
안녕
-
넌 내가 싫다고 1
이유가뭐냐고 짜증난 니표정 모든걸 말해줘 슬프게해
-
지피티랑 대화함
-
지금시점 안정잡히는 문이과 마지노가 여기인듯
-
미디어과 갈거는 아닌데 제가 영상편집 되게 좋아해서 그런데 삼성 lg 노트북 쓰시는...
-
홍보 거하게 때려야 합니다. 정말 잘 만든 라인업이네요. 심찬우-유대종-유현주T...
-
손목건초염인가 2
리겜하다 생겼는데 심할때는 걸려서 손가락 잘 안 움직여졌는데 지금은 튀어나와만 있고 아프진 않음..
-
얘들은 맨날 한다한다 그래놓고 안하더라
-
친구들이랑 피방 폰 바꾸기 오르비10시간 부모님이랑여행 친구들이랑영화 넷플밀린거벅벅...
-
현재 아이패드 프로 쓰고 있는데 노트북도 필수인가요? 아님 매직키보드로 커버 되려나요
-
작년 표점-12의 ptsd가;; 생2보단 그래도 잘 나오겠지. 한 3~4점 차이나면 안되나 ㅋㅋ
-
마려워
-
이쁘고 노래 잘부르고 다함
-
아직까지 별소리 없는거보면 강사판에서 유명한사람은 안오려나
-
진학사는 죄다 4칸 뿌리고 있는데 진짜 고신대 가야 되나..???
-
고1부터 공신폰이였는데 흑흑 드디어
-
티원 우승 제발 2
유니폼 사야됨 ㅇㅇ 팀 말고 개인마킹 부탁드려요
-
아이폰 단점) 5
이새끼 밧떼리 한번 죽기 시작하면 거의 보조밧떼리 없이 안됨
-
존나 웃기네
-
옛날에 아이폰6썼었는데 너무 오래돼서 기억도 안나는
-
그거 땜에 갤럭시에서 갈아탈까 고민 중
-
고대 0
올해 고대 문사철이랑 그 외 사회계열 점수가 몇점정도나올까요 670전후로.?
-
폰 바꾸려는데 추천 좀 11
2020년인가부터 써왔음.지금은 S21+임.
-
흑흑
-
고3들 부럽다 1
나도 학교갈래
-
1. 좋은 대학 가는 것이 성인으로서 첫 단추를 잘 꿰는 게 맞긴 한데 너무 생각...
-
시발점이랑 병행하려는데 쎈이랑 자이중에 뭐가 더 괜찮을까요? 워크북도 있는데...
-
저녁은 1
통닭인데 흐흐
-
ㅇㅅㅇ
-
지금 개피곤함. 잘까 카페인드링크할까
-
부유한 건가요? 그런 의견이 있길래.. 부모님이 재수삼수 지원해주셨긴 한데 주로...
-
찐사랑이네
-
일반전형 정시는 지방의 유의미한 입결 차이를 못느끼겠음… 내가 밑 성적대라 그런가…
-
개념강의 듣는중ㅋㅋㅠ
-
1. 무등비 삼도극 삼도미 삼도적 가형2130을 제외한 문제를 다 풂 2. 무등비...
-
물론 그 대상이 내가 되는 순간 기분 나빠짐. 내가 저격당해서 앎 ㅇㅇ
-
난이도는 훨어렵
-
언매 미적 물리 지구입니다 국어는 간신히 3컷 맞춘거고 미적 물리는 높2 국어랑...
-
럽코계의 교과서 요즘 애니들이랑 비교도 안됨 틀딱 애니 보는거 강추!
-
어떤 모델을 사야할지 감이 안잡히네요..
-
핸드폰으로 인강듣기 이거 가능한거임?
-
타다닥.. 타닥…
-
3단원 우주 쪽에서 수학과 연관하여서 발표할만한게 몇가지 눈에 띄는데 특별히...
-
메가 기준 백분위로 언매 87 수학 98 영어 1 화학 98 지구 100 고려대 공대 가능할까요
-
아루지도넛(연의26학번)님 진심으로 5수를 응원합니다! 4
비록 입결이 인설약 > 지방치라는 드립을 쳐도...! 비록 현직국어강사한테 9평...
-
언매 88 화작 90 미적 84 기하 88 확통 90 영어 5% 물리 45 화학...
확률이라는 건 전체 경우의 수 중 우리가 원하는 경우의 수를 찾는 건데, 설령 빨5파3노1 뽑아서 B가 24점을 먼저 획득하는 경우가 전체 경우의 수에 포함되어 있다고 하더라도 그게 배제되어야할 이유는 없죠. 원하는 경우의수는 분자에 해당하는거니까
애초에 B가 먼저 24점을 획득하는 경우를 배제하고 확률을 구하는건 조건부 확률 아닌가요?
그런데 빨5파3노1의 경우에서 파파파노가 먼저 나열되는 경우는 9개까지 안가고 8개 시점에서 사건이 멈추기 때문에 그 이후를 가정해서 전체 경우의수에 넣어야되는건가요? 아니면 빨3파3노3의 경우는 파파파노노노 나열하면 6개까지 가고 멈출수있는데 그 이후도 가정해서 전체경우의수에 넣는건가요?? 이해가 안됩니다.
전체 경우의 수는 순서를 고려하지 않은 모든 경우의 수를 의미하기 때문에 그런 순서 이해 관계를 개입시키지 않아도 됩니다. 분자에는 말씀주신 빨5,파3,노1가 조건을 만족시키지 않기때문에 적힐 필요가 없고요. 가령 빨간색,파란색,노란색 공을 각각 6개 1개 2개를 뽑는 상황이라면 순서에 관계없이 해당 개수만큼 각 공을 뽑아주면 되기때문에 분모는 전체 12개 중 9개의 공을 뽑은 조합의 수가 적히는것이고, 이때 말씀주신 빨5,파3,노1 개수만큼 뽑는 경우 또한 포함됩니다. 분자는 그저 각각의 색상 중 조건을 만족시키는 공을 뽑는 개수를 조합을 이용해 적어준 것이고요.만약 문제에서 구하는 경우의 수가 말씀주신 것처럼 n번째까지 결정된 이후,n+1번째 순서의 사건에 따라 달라지는 경우 분자에 해당 조취를 취해주시면 됩니다.