7모 미적 손풀이(27, 28, 29, 30)
게시글 주소: https://i9.orbi.kr/00068705978
7모 미적 손풀이.pdf
미진한 실력이지만 올려봅니다.
보충설명을 조금 하자면,
28번은 역함수가 존재하는 삼차함수라고 하였으므로 x^3의 평행이동꼴을 강하게 의심할 수 있습니다. 이것의 논리적 정당화는 다음과 같습니다.
최대 최소를 구하려면 부등식이 필요함 -> 가능한 부등식은 판별식 뿐임 -> 판별식의 경계에서는 x^3 평행이동 꼴임
이렇게 생각하고 빠르게 해결한 뒤 불안하다면 검산하는 것이 좋아보입니다.
29번은 등비수열에 절댓값이 붙은 것을 보고 r<0라는 강한 의심을 할 수 있습니다. 물론 두 급수를 더한 값이 0이라는 시점에서 r>0일 수 없음을 빠르게 파악하는 것이 최선입니다.
삼차방정식에서 뻔히 보이는 한 근이 있다면 다음과 같이 인수분해하는 것도 가능합니다.
20r^3+21r^2-1=(r+1)(20r^2 + -1)로 쓰고, 나머지 빈 항을 r^2의 계수를 이용해 맞춰주면 됩니다. 대부분 경우에서 조립제법보다 약간 빠른 것 같습니다.
마지막 급수의 수렴판단은 결국 '3x(-1)^(n-1)+어떤 등비수열'이 수렴하도록 하는 문제인데, 3x(-1)^(n-1)이 폭이 줄어들지 않고 진동하고 있으므로 반대로 진동하는 등비수열을 더해줄 수 밖에 없습니다.
30번은 적분할 수 없음을 판단하고 행동에 옮긴다면 빠르게 풀 수 있었을 것 같습니다. 그리고 간단하게 보이는 치환꼴이므로 치환해서 접근하면 조금 더 보기 편해지는 것 같습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼버기 2
-
얼른 씻고 공부하자..
-
1. 테-무에서 기존회원 신규회원 룰렛 이벤트함 2. 5만원 확정지급 링크 통해...
-
친구는 현역이고 난 재수여서 장난으로 선배님 ㅎㅎㅇㅈㄹ하는중임
-
재종 파이널 때 0
수업시간에 실모 안 풀음?? 현강에선 매주 현장응시하잖음 재종에선 현장응시같은...
-
자 2
자
-
이런 ㅆㅂ
-
궁금한거 0
어느 대학 라인부터 진학사를 많이 쓸까?? ㄴ진학사 보는게 유의미 할 만큼...
-
오르비 ㅈㄴ한산해
-
목시 vs s2 0
이번에 미적사탐으로 응시하려고 하는데 둘 중 어디가 괜찮을까요? 추천해주시면...
-
오르비를 끄겠다 3
진짜 잔다 지금 자야 내일 한 2시~3시에 일어남
-
어떰요? 수업 안 한다 뿐이지 강제성 재종급이에요?
-
영어 1이었으면 되는데가 도대체 몇개냐 ㅋㅋㅋㅋ 영어 감점 이정도로 많이 할 줄이야
-
잘자 오르비 12
-
나도 기만 기만하고 싶어..
-
1. 테-무에서 기존회원 신규회원 룰렛 이벤트함 2. 5만원 확정지급 링크 통해...
-
뭐친구?
-
학교가 공사를 한대서 20일날 이른 졸업을 했습니다. 3년간 수시러로 살면서 학교...
-
일어났어요 6
다들 자요?
-
1학년 1학기 학고->2학기 휴학 후에 반수 실패하면 자진 유급해서 다시 1학년...
-
고대식 660.1 한명만 빠지면되는데
-
애프터장은 쉽지 않구나..
-
서울대 진학사 1
어제 업뎃이후로 서울대 문과 추합컷이 많이 낮아진것 같은데 이유가 있나요?...
-
이건아직 모르겧음..
-
멍
-
나 없던 사이에 글댓을 몇개나 쓴거야
-
근데 확실히 감성이 많이 다르네 BL 느낌도 ㅈㄴ 나고 86가 ㅈㄴ 독특한듯
-
다자녀면 공군 1
얼마나 유리한가요? 영향이 어느정도인지 궁금합니다
-
교수님 안 주무세요?? 기습 계엄도 아니고 새벽 발표라뇨
-
선제리 아낙네들 2
먹밤중 한밤중 새터 중뜸 개들이 시끌짝하게 짖어댄다. 이 개 짖으니 저 개도 짖어...
-
군대갔다왔다고는 해도 03이면 내년수능보기는 너무 늦었겠지 그래도
-
크리스마스에 할짓없어서 옯비 보다보니까 ㅅㅂ 삼수생각 ㅈㄴ드네.......하아
-
자야지 4
-
좀 최신 애니인 사펑 엣지러너를 봤으니 암굴왕 같은 명작 틀딱 애니나 볼까
-
반수의 결과로 가치 있을까요? 중대가 더 높아졌긴해도 사회나가면 중경외시...
-
잘자요 4
다들메리크리스마스
-
병약미소녀 ㅇㅈ 23
은 구라고 그냥 ㅂㅅ임 펑
-
모두 잘자요 9
다들 행복한 이브 보내셨나요? 전 아싸라 늘 지내듯 지낸 것 같네요.. 모두 잘자고...
-
현역인데 여기 못가면 재수할 예정인데 합격확률 0퍼센트인가요? 7
ㅜㅜ..그리구 이해가 안가는게 최초정시 모집인원이 238명인데 저기 등수 안에잇는데 3칸 ㅜㅜ
-
산타랠리 에 숏을 쳐?
-
하루종일 오르비를 지킨 자의 훈장
-
에 전혀 관심 없는 건 아닌데 n이 늘어나니까, 연애 감정이 무뎌져요.. 연애...
-
기만글만 안쓰면 욕 안먹을 텐데
-
ㅂㅂ
-
안돼 가지마!!!
-
크리스마스에 여친없는 애들끼리 놀고있으니까 ㅈ같음이 2배 흐흐
-
저능부엉이
-
이제 자야돼 2
내일 또 보자 옯붕이들
고트
27번은 적분상수 -1을 붙여서 적분하면 편하더라고요
28번 논리적 정당화에 대해 제가 이해한 것이 맞는지 확인해주시면 감사하겠습니다.
최고차1인 3차함수가 역함수를 갖는다<=> f'(x)>=0
f'(0)가 최대가 될 때를 구하려면 등호포함 부등식을 찾아야하는데 생성가능한 부등식은 이차함수의 판별식이고, 최소가 0이다.
도함수의 최소(극소)인 변곡점의 기울기가 0인 x^3의 평행이동 꼴이다.
라고 생각한 것이 맞을까요?
네 맞습니다
감사합니다!