와진짜이풀이가맞나
게시글 주소: https://i9.orbi.kr/00069001339
몇십분동안 고민해서 겨우겨우 낸 답은 맞았지만
풀이가 다르다
내 풀이에 오류가 있는 것 같다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어차피 평가원 맘이고 우린 아무도 모르는데 누가 말이 옳니 그르니 하는게...
-
탐구 노베여서 급한불 끄느라 2개월 정도 수학을(수학도 못함..) 거의 손 놓다시피...
-
25수능은 가라 2
26,27은 남아라
-
더 늦게 자게생겼네ㅋㅋㅋ
-
11시에 누웠는데 아직도 못잠 하 어떡하지
-
이것뭐예요 6
3이랑 6이랑 6을 더해서 9를 만드는 ㅂㅅ이지 뭐예요
-
미적기준으로하면>>> 수1수2미적 지금 말하는책들 공통으로해당 본인이 개념 단기간에...
-
진정한 섹시함이란 몸이 아닌 얼굴에서 나오는 것
-
빨리 자야지
-
레데리1 샀음 2
갓 나온 게임 풀프라이스로 산 거 처음인 것 같은데 대가리 제대로 깨진 듯
-
15일은 서울대를 가기에 충분한 시간이에요 D - 15 기다려라 서울대 내가...
-
??? : 흐흐 기만이라고 빨아줄 때가 기분 좋다니까 2
대충 쿰척쿰척짤
-
수능 (메가스터디) - 64만원 전과목 +교재 별도 리트 (메가로스쿨) - T패스...
-
밥그릇뺏기 ON 3
아이디 : meta0607 아래 링크로 자세히 보기 bit.ly/3Uae6Rm...
-
아 배고파 4
내일 점심에 닭갈비 먹어야지 ㅎ.ㅎ 맛있겠다
-
과목별공부순서 1
다들 국->수->영->사 순으로 공부하시나여??
-
메가는 작년 사전예약도 60만원정도 했던걸로 기억해서 이번에도 비쌀 것 같아...
-
킬캠 2-1 1
미적 76 나왔는데 2초는 가능할까요,,ㅠ
-
참고하십쇼ㅇㅇ
-
욕이나 한탄이나 동기부여나 뭐든 그대신에 한줄!
-
다음날에 표정보고 체감 난이도 파악해야겠다.
-
국어도 잘하고 화학도 잘하면 못하는게 뭐임
-
수능판 떠날텐데 그쵸?
-
工夫하기 싫다
-
의대 모집정지되면 도미노처럼 밀릴텐데 하… 스카이 문과 정시 영향크겠지 심지어 내년...
-
11번 틀린게 한이다 진짜
-
갑자기 궁금해져서요 국어랑 수학은 pdf 진짜 못 쓰겠던데
-
헬스한 이후로 9
몸무게가 5~6키로 늘어남ㅠ
-
다 자나 10
오르비는 내가 지배한다.
-
앵간 들어줌 ㄱㄱ
-
서바가 다음티어 이감 <== 가격은 비싼데 종이 재질 joat
-
물리학과 무물 8
참고로 enfp임
-
실모벅벅 단점 4
돈이 많이 듦
-
다죽었다 후훗
-
내년에도 3
입시 준비는 디폴트....가 되겠구만. 제발 마지막 입시(반수)로 하자!...
-
엔프제 궁금한거 무물
-
전문가아니면 괜히 뇌피셜 떡밥 흘리는거 좋아보이진 않는데
-
잘라했는데 5
많이 올랐네 더 살껄 하
-
매일 그랬듯이...
-
강의안봐도되겠다
-
에휴 목욜에 시드 넣는다 … 물라기 고고혓
-
저희는 수능에서 우승해보죠
-
요새 몇시간씩 잠? 전 10시간자서 조짐
-
t1 코인토스 승리 블루 선택
-
ㅋㅋ
-
서울대 갈 수 있나요? 선택과목 언매 미적 화1 생1 입니다!
-
예정입니다. 수1,수2,확통 교재값만 해서 얼마나오나요? 이미 현우진 풀커리 타신...
-
예를들어 분명 시간재고 풀때 A로 본걸 다시보니까 B라 적혀있음 ㄹㅇ죽고싶어
-
이유는 한자 썜이 기말때 한자 낸다했는데 내봤자 조금 내겠지 하고 한자 다 던지고...
-
1:1:1:1 반영비가 많아서 존나 고민되네
몬데

잠깐만요
이렇게 풀어도 되는지도 모르겠고억지로 푼 것 같아서 불안하네요
잠깡만여 글씨가작아서 보는데좀 걸림
사실 2번 케이스에서 (1,4+a)가 존재하지 않을 “수도” 이부분은 사실 문제가 있긴 해요.
Q. 그럼 문제를 처음 풀 때 어떤 생각을 했어야 하나요?
g(x)의 연속 조건에 주목했어야 해요. g(x)가 f(x)!=0 일 때 분수꼴 함수로 나타나죠. 그러면 분수꼴 함수에서 분자, 분모는 각각 연속함수이기 때문에 불연속이 될 수 있는 의심 지점은 분모=0일 때에요

사랑해요 감사합니다그러면 g:연속이라는 조건에서 f(x)에 관한 조건을 어떻게 뽑아내야 할까요
일단 f(0)=0인 거는 잘 찾으셨고 0은 중근이 아니라는 것도 아실 수 있었겠죠 근데 여기서 하나를 더 찾아갔어야 했어요
삼차함수의 실근 하나가 밝혀졌기 때문에 0을 제외한 실근이 최대 2개 존재할 수 있어요 f(x)=xp(x)정도로 둬봅시다 (p(x)는 최고차항계수가 1인 이차함수)
1) p(x)의 서로 다른 실근이 2개인 경우
p(x)의 인수 중 하나가 (x+3)이더라도 무조건 분모=0이 되는 x가 존재하므로 모순.
2) p(x)가 중근을 가질 경우
최대한 분모가 0인 지점이 없도록 맞춰준다고 해도 p(x)=(x+3)^2 이고 x=-3일 때 발산, g(x)는 불연속이 됩니다
따라서 p(x)는 실근을 갖지 않아요
상수항은 질문자님도 이미 찾으셨으니 판별식 이용해서 p(x)의 일차항 계수의 범위를 구해주시면 되겠어요

감사합니다!!저는 아마 보자마자 p(x)는 실근을 갖지 않는다고 생각했을 거에요
경험 더 쌓으시다 보면 바로바로 보일 거에요
참고로 답이 되는 삼차함수가 2번 케이스처럼 생겼는데 실근이 1개만 생길 수도 있어요
저렇게 판단하는 건 틀렸다고 봐야겠어요
얘는 해설입니다