[칼럼] 올해 평가원이 만지작거리고 있을 패
게시글 주소: https://i9.orbi.kr/00069001994
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
완자 다음에 마더텅 or 수특 3개년?
-
맥주나 막걸리면 몰라도 소주 같은 건 관심도 안 간다 그 돈이면 차라리 XXXX를 사서 XX을 XX
-
ㅈㄱㄴ 낙지 텔그
-
추천좀 대성에서
-
예비고1이고 노베임 아니이번년도 3모 휘뚜루마뚜루풀엇더니 3등급나옴 ㅗㅗㅗㅗ 동네...
-
자야하는데
-
전과 1
만약 1학년 끝나고 전과를 한다고 하면 전과를 한 과에서 1학년부터 다시 다니게 되는건가요?
-
디지게피곤하네 6
에휴이
-
학과 상관없어요 가천대는 절대 못가는건 알고.. 경기대 안되면 어느 라인이 추합이나...
-
팡일이 홀수기출 0
홀수기출 사볼까하는데 괜찮은가요?? 해설이 자세하다길래.. 특히 감옥에서...
-
7시 시 반에 자러 7시에 인남 근데 정신이 막 말끔하거나 그렇진 않네 1시간 동안 폰해서 그런가
-
아침 뭐먹지 1
역시떡볶이?
-
대구는 아직 북구만 오나봐요..동생한테 사기꾼이라고 욕먹었어요
-
국어 피지컬 올리는데 좋겠죠 잠오는 거 꾹 참고 스카로 향하는 중 난 수시와 정시...
-
왜 자꾸 지혼자 새로고침 하냐고 개답답하네
-
재수 할말 0
화작 미적 생지 32235 인서울은 가능할지….
-
아 기분조아 화이트 겨울
-
8시퇴근이라고...
-
얼버기 0
-
소개팅할 때 여초학과 여자들 인기 많음?
-
쉐어했는데 쉐어하는 분 구한다고 또 글 올리시네 띠용 이거 사기아닌가
-
방학때 영어 실력을 올리기위해서 공부하려고 합니다!! 션티쌤 키스타트랑 이영수쌤...
-
비문학 법·행정 지문 제재 단원별 정리 제3판.list 0
안녕하세요, 디시 수갤·빡갤에서 주로 활동하는 무명의 수능 국어 강사입니다. 지난...
-
호우 0
환전지연없이 안전한사이트입니다 삭종 이벤트도 진행중이니 한번 즐겨보세요 호우 평생주소.com
-
안녕하세요 수능 박은 06입니다 올해 수능 생1지1 했는데 (생명 백분위 87 지구...
-
그냥 전년도 자료?
-
사문 기출 4
사문 노배라 임정환 풀커리 탈건데 마더텅 같은 기출 문제집 따로 푸는게 좋나요?...
-
퇴근1시간남았다 0
시간좀 빨리가길
-
주식에 거금 100만원넣어도 운좋게 2배가 띄워도 겨우얻는건 100만원 근데...
-
제 성적으로 상향으로 지를만한 학교인가요?
-
뭔가 반수 결정했으면 저런거 가면 안될거 같은데 다들 어케하심?
-
쇼츠로 요즘 뜨던데 20년전거인데도 개꿀잼이네 몰아보는중
-
서성한 성적 받고 홍대 문과로 수시 납치 당한 사람인데요.. 반수가 정말 당연한...
-
어디가 더 좋음?
-
요즘은 전전 컴공 나와도 최소 석사는 다들 밟는 분위기입니다 학사취업은 그냥 과...
-
원래 6시간은 채워야 일어나지는데 주말엔 더자고 싶은데도 눈떠져서 5시간정도밖에...
-
10명뽑는지역인재약대논술인데 1명이빠질확률이있을지
-
솔직히 목소리바꾼다해도 말투때매 어느정도 티날수밖에 없는데 유명한만 연기하는것도...
-
1칸 2칸 스나 합격하기
-
고시류 빼면 취업은 어떻게함??
-
국민대vs세종대 3
제가 3년동안 진로는 생명으로 잡긴 했는데 부모님은 국민대를 원하시네요 어디가 좋을까요
-
그게 나이지나… 난 오히려 겉껍질만 이성이 되었지 진짜로 완전한 이성이 된 게...
-
동국대도 같이 붙으신분 있으신가여?
-
제가 좋아하는 드라마에서 이런 대사가 나와요 가끔, 아주 가끔 마시지 않았는데도...
-
하 ㅅㅈ 2
나 월요일 시험인데 내일하루종일(이제오눌) 공부해야하는데 아직도 안쳐잠 며칠째이미...
-
저는 잠에 들면 자요
-
오늘 눈온다내 7
전 눈이 좋아요
-
이제 자러감요 3
ㅂㅂ
-
새벽에 심심해서 쓰는 시대인재 8기 후기&TIP(1) 10
일단 이번 글에서는 강사 라인업 위주로 적어봄 [목동 본관 S반] 별점은...
-
뭔가 기절할것같다 피곤하진 않은데 멍하니 있다가 정신 잃을 것 같음
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ