영신의혼을세계로 [954229] · MS 2020 · 쪽지

2024-08-28 00:48:37
조회수 5,354

쉬워보이는 간단한 퀴즈

게시글 주소: https://i9.orbi.kr/00069010033

세 학생 A, B, C가 있다.


  1. A: 내가 방금 서로 다른 두 숫자 x, y를 떠올렸어. x, y는 모두 1보다 크고, 합은 100 이하야. B에겐 둘의 합을, C에겐 둘의 곱을 알려줄 테니 x,y를 한번 맞춰 봐!

  2. B: C는 정답을 모를 거야.
  3. C: B 말을 듣고 나니 답을 알겠어.

B: 나도 이제 답을 알겠어.


B, C는 답을 동시에 말했고, 결과는 둘 다 정답이었다. x,

y는 무엇이었을까?



풀이과정&답 정확하면 인정ㅋㅋ


0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • 수능장아찌 · 1298237 · 08/28 00:49 · MS 2024

  • 영신의혼을세계로 · 954229 · 08/28 00:50 · MS 2020 (수정됨)

    맞히시는분은 제 모든덕코를 드리겠읍니다

  • 팜팜하니하니 · 1162024 · 08/28 00:51 · MS 2022

    이..이게뭐노

  • 물지러 히카리 · 1261758 · 08/28 00:52 · MS 2023

  • KHU, SNU. · 1323207 · 08/28 00:52 · MS 2024

    와 재밌다 소름돋았어

  • KHU, SNU. · 1323207 · 08/28 00:53 · MS 2024

    x, y는 자연수인가요?

  • 영신의혼을세계로 · 954229 · 08/28 00:59 · MS 2020

    네!!

  • KHU, SNU. · 1323207 · 08/28 01:05 · MS 2024

    넌센스 아니죠?

  • 영신의혼을세계로 · 954229 · 08/28 01:07 · MS 2020

    네 아니에요!!

  • 몽 실 · 1323793 · 08/28 00:57 · MS 2024

    근데 숫자가 두자리 수도 포함이에요 ?

  • 영신의혼을세계로 · 954229 · 08/28 00:59 · MS 2020

    그렇져

  • 전준우 · 1239511 · 08/28 00:59 · MS 2023

    x+y=9
    x×y=20

  • 영신의혼을세계로 · 954229 · 08/28 00:59 · MS 2020

  • 전준우 · 1239511 · 08/28 01:04 · MS 2023

    정답:동시에 답을 말했는데 둘 다 정답이니까 x y 2 2

  • 파인애플 게이 · 1264763 · 08/28 01:00 · MS 2023

    힌트

  • 영신의혼을세계로 · 954229 · 08/28 01:03 · MS 2020

    대화가 중요한역할을 해여

  • 건조한물빛 · 1158561 · 08/28 01:00 · MS 2022

    안쉬워보이는데요

  • 샤대가기 · 1247592 · 08/28 01:01 · MS 2023

    2랑9? 2랑9밖에 안 되는 거 같은데 곱이 18이면서 합이 11인게 x=2,y=9뿐임

  • KHU, SNU. · 1323207 · 08/28 01:04 · MS 2024

    B C는 곱 합 중 하나밖에 모르잖어
    B가 11을 보고 C는 못 맞춘다고 확언할 수 없지 않음?
    C에게 주어질 수 있는 조합이 엄청 다양한데 18, 24, 28...

  • 샤대가기 · 1247592 · 08/28 01:05 · MS 2023

    합이 11 되는 거를 생각해보면 (1,10) (2,9) (3,8) (4,7) (5,6) 9*2가 18로 유일함

  • 전준우 · 1239511 · 08/28 01:06 · MS 2023

    합이 왜 11이에요?

  • 종이기름 · 1259652 · 08/28 01:02 · MS 2023

    3,4 맞나요?

  • 종이기름 · 1259652 · 08/28 01:02 · MS 2023

    맞는것같은데

  • 종이기름 · 1259652 · 08/28 01:03 · MS 2023

    아니 그냥 무조건이야 무조건 3,4야

  • 영신의혼을세계로 · 954229 · 08/28 01:03 · MS 2020

  • 종이기름 · 1259652 · 08/28 01:04 · MS 2023

    아아아아 2,3

  • 미녀와야스 · 1165730 · 08/28 01:04 · MS 2022

    2,3이면 b가 바로 맞추지

  • 종이기름 · 1259652 · 08/28 01:05 · MS 2023

    오 님천제,.

  • 팜스퍼거 · 1187906 · 08/28 01:05 · MS 2022

    x=4
    y=13 ?

  • 건조한물빛 · 1158561 · 08/28 01:06 · MS 2022

    이거같은데

  • 영신의혼을세계로 · 954229 · 08/28 01:07 · MS 2020

    옹 왜죵??

  • 파인애플 게이 · 1264763 · 08/28 01:33 · MS 2023

    어서 이유를 말해줘잉
    그게 답인것 같단말이에요

  • 파인애플 게이 · 1264763 · 08/28 01:05 · MS 2023

    곱이 소수면 해결돨거같은데

  • 파인애플 게이 · 1264763 · 08/28 01:05 · MS 2023
    회원에 의해 삭제된 댓글입니다.
  • 파인애플 게이 · 1264763 · 08/28 01:06 · MS 2023

    흠 아닌듯

  • 파인애플 게이 · 1264763 · 08/28 01:07 · MS 2023 (수정됨)

    아 합이 소수인건가

  • 출기능수 · 655203 · 08/28 01:10 · MS 2016
    회원에 의해 삭제된 댓글입니다.
  • 김지헌T · 999717 · 08/28 01:13 · MS 2020

    2, 6?

  • 종이기름 · 1259652 · 08/28 01:16 · MS 2023

    정답!

  • 영신의혼을세계로 · 954229 · 08/28 01:17 · MS 2020

  • 스 티 치 · 1324561 · 08/28 01:13 · MS 2024

    2,6아님?

  • 스 티 치 · 1324561 · 08/28 01:15 · MS 2024 (수정됨)

    B : 8을 받음
    2,6 3,5가 가능
    3,5면 상대가 바로 알것이므로 2 6임
    C: 12 받음
    2,6 3,4 가능 만약 상대가 7을 받았다면 2,5 3,4인데 2,5면 모른다고 안 말했을 것

  • 건조한물빛 · 1158561 · 08/28 01:18 · MS 2022

    x랑 y가 둘 다 소수이면 안되지 않을까요 그럼 b는 c가 모를거라고 확신할 수 없잖아여

  • 스 티 치 · 1324561 · 08/28 01:21 · MS 2024

    그렇네여 확신..

  • 영신의혼을세계로 · 954229 · 08/28 01:27 · MS 2020 (수정됨)

    그렇져 !! 건조한물빛님이 가닥을 잡으셨네용

  • 종이기름 · 1259652 · 08/28 01:14 · MS 2023

    아 2,6 맞다

  • 종이기름 · 1259652 · 08/28 01:15 · MS 2023

    B가 8 알고 있을때 b는 2,6또는 3,5로 생각함
    C가 8을듣고 알았다고했으므로
    B생각에는 곱이 15 (3,5)이면 맞췄을것으로 생각하므로
    2,6임

  • 파인애플 게이 · 1264763 · 08/28 01:17 · MS 2023

    8을 듣고 안게 아니지 않음??
    B는 그냥 c가 정답을 모른다고 한게 다잖아

  • 종이기름 · 1259652 · 08/28 01:18 · MS 2023

    ㄴ 8을 듣고 그 다음에 c가 정답을 알게된거

  • imna · 1284348 · 08/28 01:15 · MS 2023

    49, 50

  • 미녀와야스 · 1165730 · 08/28 01:16 · MS 2022

    걍 C가 말하기 전에 B가 선빵친거니까 3,5때메 2,6 아닌거같은디

  • 영신의혼을세계로 · 954229 · 08/28 01:17 · MS 2020

    2,6 아닙니당!!

  • 파인애플 게이 · 1264763 · 08/28 01:18 · MS 2023

  • 김지헌T · 999717 · 08/28 01:18 · MS 2020
    회원에 의해 삭제된 댓글입니다.
  • 종이기름 · 1259652 · 08/28 01:18 · MS 2023

    아니 2,6아니라고?

  • 건조한물빛 · 1158561 · 08/28 01:22 · MS 2022

    x+y가 8이면 안되지않나요

  • XDYDZD · 1319119 · 08/28 01:20 · MS 2024

    나 이거 찢어진 달력에서 생일맞추기로 본거같아

  • 건조한물빛 · 1158561 · 08/28 01:21 · MS 2022
    회원에 의해 삭제된 댓글입니다.
  • KHU, SNU. · 1323207 · 08/28 01:21 · MS 2024

    B가 하는 첫 말에서 의미를 찾기 힘드네. 일반적인 경우에 성립할 수 있는 말이라. 케이스가 추려지지 않아.

  • KHU, SNU. · 1323207 · 08/28 01:21 · MS 2024

    일반적인 경우에 성립하는 말을 듣고 갑자기 정답을 알아버린 C? 골까는구만

  • 파인애플 게이 · 1264763 · 08/28 01:21 · MS 2023
    회원에 의해 삭제된 댓글입니다.
  • pseudocumlaude · 1297832 · 08/28 01:22 · MS 2024

    둘 다 자연수인가

  • 미녀와야스 · 1165730 · 08/28 01:22 · MS 2022

    100이하라는거 보니까 두자릿수인거 같은데 어느세월에 구하지

  • 스 티 치 · 1324561 · 08/28 01:24 · MS 2024

    일단 B가 받을건 2 + 소수가 아닌 홀수여야 하는데..
    2 + 9, 2+ 15, 2+21
    9 15 21 27 33 35 39 45… 중에서 곱할때…

  • 스 티 치 · 1324561 · 08/28 01:33 · MS 2024

    C조건을 보자면… 상대가 모르겠다 ㅋ 라고 했을 때 맞춰야한다는걸 보면 일단 C가 18이라 하면 2 9 일때 상대는 11이므로 상대는 모른다고 할거고 3 6이라 하면 9이므로 애초에 안돼. 스킵

    30이라 하면 2 15라 하면 상대는 17이라 하면 되겠지
    근데 3 10 이라하면 상대는 13이라 할거고 이는 상대가 안 된다 안 함
    5 6이라 하면 11이라 안 된다 해서 중복 즉 안됨

    42라 하면 2 21하면 23으로 안 된다 함
    3 14라 하면 17로 안 돤다 함 중복

    54-> 2 27 3 18 6 9
    2 27 안된다함
    3 18->21 안된다고 안함
    6 9 -> 15 안 된다고 안함
    즉 숫자는

    2 27?
    B는 29로 타당함
    C는 54로 2 27 3 18 6 9인데 나머지는 다 되니까… 2 27?

  • 스 티 치 · 1324561 · 08/28 01:36 · MS 2024

    29 -> 2 27, 3 26, 4 25… 로 절대 상대는 한번에 맞출 수 없음
    54 -> 2 27, 3 18, 6 9
    인데 만약 3 18인 경우 21로 이는 상대가 한 번에 맞출 수 없다고 못함
    6 9인 경우 15로 이는 상대가 한 번에 맏출 수 없다고 못함….?

  • 스 티 치 · 1324561 · 08/28 01:42 · MS 2024 (수정됨)

    B자 29일때 다른 수를 봐보자
    2 27-> 54 = 2 27 3 18 6 9
    3 26 -> 78 = 2 39 3 26 x
    4 25 -> 100 = 2 50 X
    5 24 -> 120 = 2 60 x
    6 23 -> 138 = 2 69 3 46 6 23 x
    7 22 -> 2 77 x
    8 21 -> x
    9 20 x
    10 19 -> 2 95 x
    11 18 -> 2 99 3 66 x
    12 17 -> x
    13 16 x
    14 15 -> 2 85 3 70x

  • 미녀와야스 · 1165730 · 08/28 01:26 · MS 2022

    2,9 같은디

  • 미녀와야스 · 1165730 · 08/28 01:27 · MS 2022
  • 미녀와야스 · 1165730 · 08/28 01:30 · MS 2022
    회원에 의해 삭제된 댓글입니다.
  • 김지헌T · 999717 · 08/28 01:31 · MS 2020
    회원에 의해 삭제된 댓글입니다.
  • 미녀와야스 · 1165730 · 08/28 01:37 · MS 2022

    B가 알게되는거때메 아니네요 ㅜ

  • 자운영。 · 1273911 · 08/28 01:55 · MS 2023

    2,9 왜 아니에요?

  • 자운영。 · 1273911 · 08/28 02:03 · MS 2023

    아 마지막

  • KHU, SNU. · 1323207 · 08/28 01:26 · MS 2024

    X= 2, Y =5

  • KHU, SNU. · 1323207 · 08/28 01:27 · MS 2024

    C는 정답을 애초에 알고 있음. 2, 5밖에 될 수 없거든.
    어? 근데 C가 갑자기 못 맞출거래? B의 입장에서는 3,4 2,5 중 하나야.
    근데 B의 말 이후에 C가 정답을 알겠다네? 3,4는 정답을 확언할 수 없어. 따라서 2,5라고 확정할 수 있는거지.

  • KHU, SNU. · 1323207 · 08/28 01:28 · MS 2024

    C가 처음부터 정답을 알고있어야 해. C의 말을 듣고 B가 경우를 추리는 경우이지 않을까

  • 건조한물빛 · 1158561 · 08/28 01:29 · MS 2022

  • KHU, SNU. · 1323207 · 08/28 01:29 · MS 2024

    왜 아니야 어디가 틀렸어!!

  • 건조한물빛 · 1158561 · 08/28 01:30 · MS 2022 (수정됨)

    x,y가 둘 다 소수인 경우가 나오면 안되져
    그럼 b는 c가 모를거라고 확신할 수 업슴

  • KHU, SNU. · 1323207 · 08/28 01:31 · MS 2024

    B는 확신 안 함. 일거야~ 이렇게 함. 얘 눈치 보면서 추측하는거임

  • 건조한물빛 · 1158561 · 08/28 01:32 · MS 2022

    예?? 신박한 접근이군요

  • KHU, SNU. · 1323207 · 08/28 01:36 · MS 2024

    애초에 모를거라고 확언할 수 있는 케이스 자체가 없음. 맞출 확률이 조금이라도 있기 때문.

  • 힘내줘요 · 1091957 · 08/28 03:13 · MS 2021

    확언가능하지않나요

  • 파인애플 게이 · 1264763 · 08/28 01:28 · MS 2023
    회원에 의해 삭제된 댓글입니다.
  • 파인애플 게이 · 1264763 · 08/28 01:31 · MS 2023
    회원에 의해 삭제된 댓글입니다.
  • 스 티 치 · 1324561 · 08/28 01:38 · MS 2024

    2 27 아님?

  • 스 티 치 · 1324561 · 08/28 01:44 · MS 2024

    자야겠다 머리다씀

  • 스 티 치 · 1324561 · 08/28 01:58 · MS 2024

    이거 검증좀

  • pseudocumlaude · 1297832 · 08/28 01:40 · MS 2024

    수리과학부 인스타에 비슷한 게 있었는데... 흠...

  • pseudocumlaude · 1297832 · 08/28 01:54 · MS 2024 (수정됨)

    집합 대응관계랑 좌표평면 등등 여러 방면으로 지름길 있나 시도해 봤는데 결국 노가다 영역을 벗어나지 못 해서 어림도 없네요 그럼 쌩 정수론 문제같은데...
  • 랩실의노예 · 993446 · 08/28 01:47 · MS 2020

    간단한가?

  • SEOUL NAT'L UNIV. · 1280585 · 08/28 01:50 · MS 2023

    4, 6

  • 스 티 치 · 1324561 · 08/28 01:51 · MS 2024

    B기준 c가 3 7일 경우 확정 가능

  • 미녀와야스 · 1165730 · 08/28 01:51 · MS 2022

    소수의 합으로 표현되는걸 이용하면 나올거같은데 케이스가 넘 많아서 자러가야할듯;

  • 자운영。 · 1273911 · 08/28 01:54 · MS 2023

    2,9

  • 파인애플 게이 · 1264763 · 08/28 01:54 · MS 2023

    모르겄다

  • 메가커피캐모마일 · 1225697 · 08/28 01:59 · MS 2023

    첨봤을때는 c가 소수×소수×2의 형태를 받은 거 같은데..
    너무 복잡하다 내일 일어나면 답이 나와있을듯

  • 파인애플 게이 · 1264763 · 08/28 02:01 · MS 2023

    자고 오면 누군가 맞추겠지??

  • Einar · 1086403 · 08/28 02:02 · MS 2021

    2 27, 합 29 곱 54
    B발언은 합이 29인 자연수쌍들 (2 27부터 14 15까지) 모두 소수2개로만 있는 쌍이 없어서 답을 하나로 확정할수 있는 경우가 없다는 뜻이 되고,
    C는 54에서 가능한 쌍들(2 27부터 6 9까지) 중에서 B가 말한 가능성이 성립하는 쌍이 2 27밖에 없음

  • 자운영。 · 1273911 · 08/28 02:04 · MS 2023 (수정됨)

    마지막 B의 그럼 나도 알겠어는 어떻게 하셨어요?

  • 건조한물빛 · 1158561 · 08/28 02:13 · MS 2022

    거기까지만 따지면 (2,9)랑 (4,13)도 되지않아요?
    마지막 말 해석해야되는데 못하겠음
    결론: b랑 c 초고능아임

  • 자운영。 · 1273911 · 08/28 02:16 · MS 2023 (수정됨)

    네 저도 거기까지만 하고 2,9 되는줄 알았는데
    B가 11 에서
    C가 혹시 3,8 -> 24 를 들고있다고 상상할 경우를 못지우는거같더라고요 (얘도 C가 (2,12)( 3,8 )(4,6 )중 3,8 만 남아서 알았다고 말하게 되는거

  • Einar · 1086403 · 08/28 02:16 · MS 2021

    합이 29일때 c가 가질 수 있는 곱이 54, 78 부터 210까지 있는데 78을 예로들면 합이 26 3해서 29나 13 6해서 19가 되는데 19는 처음 B 발언과 달리 소수쌍이 존재(2 17)해서 성립할 수가 없네요.
    이런식으로 소거하면 b는 C가 가질수 있는 쌍이
    2 27 54밖에 없구나를 알수있을거 같아요

  • 자운영。 · 1273911 · 08/28 02:30 · MS 2023
    회원에 의해 삭제된 댓글입니다.
  • 자운영。 · 1273911 · 08/28 02:42 · MS 2023

    B가 자기가 들고있는게 4,25 라고 생각할수도 있어요

    C가 100을 듦
    2,50 : 52 -> 23+29
    4,25 : 29 (o)
    5,20 : 25 -> 2+23

  • Einar · 1086403 · 08/28 02:50 · MS 2021

    포기요
    조건이 3개인데 첫 조건은 2부터 숫자써놓고 소수만 칠해둔다음 소수 2개가 안만나는 자연수까지 세면 성립가능 (2 9, 2 15 / 4 13)
    두번째는 그 수를 숫자의 곱으로 표현해서 더한값이
    첫 조건에 성립하는게 한 가지만 나오면 가능
    (54는 29 15, 15는 안되니 29)
    이까진 쉬운데 마지막 조건은 b의 값에서 나올수 있는 모든 c값을 체크해서 각 값이 두 수의 곱으로 표현됐을때 정답 한가지를 빼면 첫 조건을 만족시키는 쌍이 2개 이상 나와야됨
    이건 컴퓨터 부르는게 맞다 ㅜ

  • 팜스퍼거 · 1187906 · 08/28 02:21 · MS 2022

    4 , 13 맞음?
    합이 17인 경우
    (x,y) = (2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)

    곱 : 30 42 52 60 66 70 72

    곱이 52이면 가능한 쌍 (2,26),(4,13)

    2,26이면 C가 B의 말에 따라 답 확신 불가
    4,13이면 C가 B의 말에 따라 확신 가능

  • pseudocumlaude · 1297832 · 08/28 02:23 · MS 2024

  • pseudocumlaude · 1297832 · 08/28 02:35 · MS 2024

    4 13 무조건 맞긴 한데 고민 많이 해봤는데도 정답까지 논리적으로 추론 못하겠네요 혹시 어떻게 하셨나요?

  • 자운영。 · 1273911 · 08/28 02:25 · MS 2023
    회원에 의해 삭제된 댓글입니다.
  • 미녀와야스 · 1165730 · 08/28 02:29 · MS 2022
    회원에 의해 삭제된 댓글입니다.
  • 건조한물빛 · 1158561 · 08/28 02:38 · MS 2022

    ㄹㅇ 4 13 보고 풀면 설명 가능한데 어케 혼자 찾으신거지

  • 미녀와야스 · 1165730 · 08/28 02:42 · MS 2022

    소수의합으로 노가다하니까 맞네영

  • Einar · 1086403 · 08/28 03:09 · MS 2021

    이게 정확하네요
    첫 조건을 만족하는 두 수의 합이
    11 17 23 27 35 37 이렇게인데 52를 빼면 모두
    최소 두개씩은 들고있어서 4 13 52가 정답같아요

  • 여우는 행복하다 · 922774 · 08/28 02:45 · MS 2019

    4 23

  • 여우는 행복하다 · 922774 · 08/28 03:05 · MS 2019

    4 79

  • 힘내줘요 · 1091957 · 08/28 03:08 · MS 2021
    회원에 의해 삭제된 댓글입니다.
  • 야옹옹 · 1252587 · 08/28 03:11 · MS 2023

    4 13
    6 9
    7 8

  • 힘내줘요 · 1091957 · 08/28 03:12 · MS 2021

    4 13이랑 8 9랑 마지막에 구분 못하지 않음요?

  • 미녀와야스 · 1165730 · 08/28 03:16 · MS 2022

    8 9면 c가 몰름요

  • 힘내줘요 · 1091957 · 08/28 03:22 · MS 2021

    중간에 빼먹었었네 아오 다풀었었는데...까비임니당

  • 힘내줘요 · 1091957 · 08/28 03:15 · MS 2021 (수정됨)

    글로 적어볼게요
    합 S 곱 T

    1. B가 “자신있게” 응너모름을 외치려면, B가 가진 “합”은 두 소수의 합으로 표현되지 않는다.
    (거의 사실이라고 알려진) 골드바흐 추측에 의해, “합”은 홀수이다. 합이 홀수라면, 곱은 반드시 2를 인수로 가지므로 2x소수 꼴만 아니면 된다. 따라서 ”합“은 <홀수 중 소수+2가 아닌 것들의 집합>이다.

    좀 디테일하게 가보자면, 가능한 ”합“ S의
    집합은 P{11,17, 23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,93,95,97}일 것이다.

  • 힘내줘요 · 1091957 · 08/28 04:39 · MS 2021

    2-1. C는 처음에 답을 몰랐으므로 T(곱)의 약수는 6개 이상임(...ㄱ)
    2-2
    C는 “응너모름”을 듣고 답을 알았으므로,
    C가 가진 T에 대해서 < T에 대응하는 모든 순서쌍을 관찰했을 때, 가능한 S들 중 하나만이 P에 속함>이 진실이다.
    우선, P에 속하는 S가 존재하려면 T는 홀수여서는 안 된다(...ㄴ) 따라서 T는 약수 6개 이상인 짝수여야 한다.
    또, P는 전부 홀수이므로 T(곱)을 순서쌍으로 쪼갤 때 둘의 합이 홀수이려면 모든 2를 한쪽에 몰빵해야 한다.

    위와 같은 규칙으로, 가능한 T의 집합인 Q를 구할 수 있다.(최대가 100인 P와 달리 Q는 최대 9900까지 가능하므로 나열하지는 않겠다. 대충 제 최신글 보셈)

  • 힘내줘요 · 1091957 · 08/28 04:46 · MS 2021 (수정됨)

    3. B는 C가 ”알겠다“는 이야기를 듣고 답을 알았다. 이는 곧 B가 S를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중 Q에 포함되는 것이 단 하나여야 한다는 얘기다.(Q의 정의는 윗 댓글 참고)
    이때 핵심 아이디어가 등장한다. <2를 몰빵해야 함>에서 아이디어를 얻어 보자
    만약 S가 4+p1으로 표현되면서 동시에 8+p2로 표현된다고 하자. (단 p1,p2는 소수)
    그렇다면, 이 댓글의 첫 문단을 참조하면
    <모든 순서쌍에 대응하는 T들> 중 Q에 포함되는 것이 적어도 4p1, 8p2로 벌써 두 개가 되어 버린다. 따라서 P의 원소들 중 저렇게 표현되는 S들은 답이 될 수 없는 것이다. 이는 16,32,64에도 마찬가지로 적용된다.(*S는 2+p로 표현되지 않음을 처음에 얘기했으므로 이 경우는 제외 가능)

    따라서, P{11,17,23,27,29,...95,97}에서, 2^@ +p 꼴(2<=@<=6)로 표현되는 경우의 수가 두 가지 이상인 P들을 모조리 제거할 수 있다!

  • 힘내줘요 · 1091957 · 08/28 04:53 · MS 2021

    이를 모두 제거하고 남은 집합을 P'이라고 하자. 그렇다면 P'는 {17,29,41,53,59,89,97} 이다.
    (제가 노가다했습니다. 믿으세요)

    이제< P'의 원소에 해당하는 S>를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중, 만을 제거하면 된다.(*0개인 경우는 왜 제거 안하나요? -> 해당 수들은 전부 2^@ x p 꼴로 표현됩니다. 단지 @이 한 개여서 살아남은 거죠. 제가 해봤습니다.)

    Q에 속하는 T를 나열하는 것은 비직관적이니, “곱이 Q에 포함되도록 하는 순서쌍“을 S를 기준으로 하여 나열하겠습니다.
    두 개가 되는 순간 더 세지는 않았습니다.

    S=29: (2,27) (4,25)
    S=41: (4,37) (16,25)
    S=53: (16,37) (40,13)
    S=59: (16,43) (4,55)
    S=89: (16,73) (64,25)
    S=97: (8,89) (16,81)

    S=17: T가 Q에 속하는 순서쌍이 (4,13) 하나로 유일함.

  • 힘내줘요 · 1091957 · 08/28 04:55 · MS 2021

    따라서, “두 수의 합”이 100 이하라는 가정 하에서는 (4,13)만이 유일하게 가능한 순서쌍임이 증명되었다.(확장된 증명은 모르겠네요)
    으아!!! 이제 잘 수 있다
    두시간 썼어요 ㅎㅎ

  • 힘내줘요 · 1091957 · 08/28 05:12 · MS 2021

    *이제< P'의 원소에 해당하는 S>를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중, Q에 포함되는 것이 2개 이상인 것만을 제거하면 된다.

  • 영신의혼을세계로 · 954229 · 08/28 11:04 · MS 2020

    Goat네요.. 정답입니당..!!

  • SEOUL NAT'L UNIV. · 1280585 · 08/28 03:15 · MS 2023 (수정됨)

    (p, r은 소수이다.)
    B입장에서 자기 값이 소수이면 일단 x y중 하나에 1이 포함된다고 생각해서 문제 조건에 의해 C가 못맞출거라고 생각할 것이다. C는 이 말을 듣고, 두 x+y가 소수일 것을 알 수 있다.
    x=pq, y=r 이라고 해보자. 두 수가 모두 합성수이면 합이 소수가 되지않기 때문이다.

    서로 한 생각 - B : x + y는 소수니까 C는 못맞춰 / C : 아 x+y가 소수라서 저런 말을 하는구나

    xy = pqr인데, C가 바로 답을 못낸 이유는 소인수 중 거듭제곱 횟수가 2 이상인 수가 있기 때문이다. 만약 한 소수의 거듭제곱 횟수가 3 이상이면 p*( )의 형태가 필연적으로 2가지 이상 생기기 때문에 x, y의 형태를 특정할 수 없다.
    그러므로 q=p 라 해보자. xy = p^2 * r, x+y = p^2 + r이다.

    C가 생각할 수 있는 조합은 (p^2, r), (p, pr)이다.
    만약 x, y가 p, pr 이라면 x+y=p(r+1)이다. 2를 제외한 수가 소수가 되려면 끝자리가 1, 3, 7 중 하나여야 하는데, 2가 아닌 r에 대해 r+1은 소수가 아니므로 x=p^2, y=r로 특정된다. 따라서 x = p^2, y = r 이다.

    2제곱=4, 3제곱=9, 5제곱=25, 7제곱=49인데, 소수에 어떤 수를 더해서 소수를 만들어야 할 때, 그 더해지는 수의 끝자리는 2, 3, 4, 6, 8 중 하나여야하므로 2의 제곱인 4만 남게되어 x=p^2=4로 결정된다.

    그럼 y=r은 3, 7, 13, 19, 37, 43, 67, 79 중 하나인데, 어떻게 특정할까.

    이까진 맞지않나요

  • SEOUL NAT'L UNIV. · 1280585 · 08/28 03:25 · MS 2023
    회원에 의해 삭제된 댓글입니다.
  • SEOUL NAT'L UNIV. · 1280585 · 08/28 03:40 · MS 2023
    회원에 의해 삭제된 댓글입니다.
  • SEOUL NAT'L UNIV. · 1280585 · 08/28 03:43 · MS 2023 (수정됨)

    x+y값에 대해 가능한 x+y를 37까지만 나열해봤더니 합이 17이면서 (x, y)=(4, 13)인 경우만 가능하네요...나머지는 하나가 세제곱 이상이거나, xy의 소인수가 3개를 넘어가서 제외됩니다

    **B가 C는 정답을 알 수 없을 것이다 라고 말한 후에, C가 즉답을 하지 못한 시점에서 B는 x=p^2, y=r 꼴임을 알게됩니다

  • SEOUL NAT'L UNIV. · 1280585 · 08/28 03:58 · MS 2023

    그러면 B와 C는 가능한 y로부터 가능한 x+y를 모두 찾은 후 유일한 (x, y)를 찾을 것이고,C가 그걸 찾았단 소식을 들으면 자기가 찾은 값과 C가 찾은 값이 유일하단 사실 하에 B 또한 정답이 무엇인지 알겠다고 하는 것이겠죠

  • 힘내줘요 · 1091957 · 08/28 04:13 · MS 2021

    첫 줄이 무슨 말인가요? 그리고 두 합성수의 합이 소수일 수 있지 않나용

  • SEOUL NAT'L UNIV. · 1280585 · 08/28 04:15 · MS 2023 (수정됨)

    어 맞네요 그건 취소

  • SEOUL NAT'L UNIV. · 1280585 · 08/28 04:21 · MS 2023

    잠만요 님 저 그냥 처음부터 완전히 잘못생각하고 풀었음

  • SEOUL NAT'L UNIV. · 1280585 · 08/28 04:21 · MS 2023

  • 국스퍼거호소인 · 1271032 · 08/28 09:35 · MS 2023

    Sum and Product Puzzle이네요
    확실히 지금봐도 골때리는 문제인듯 ㅋㅋㅋ

  • 오달원 · 1067183 · 08/28 11:23 · MS 2021

    이거 예전에 퍼즐리스트 문제로 봤던 기억이 나네요 ㅋㅋ 그런데 그때는 두 수가 2보다 크거나 같은 정수이기만 하면 됐는데 조건이 살짝 다르네요?? 답은 똑같나요?? 4랑 13인걸로 기억하는뎅

  • 오달원 · 1067183 · 08/28 11:28 · MS 2021

    암산으로 수를 알아맞히기 대회의 결선에 오른 S와 P라는 두 사람의 암산 명수에게 사회자가 1보다 큰 어떤 두 개의 정수를 알아맞혀 보라는 문제를 내면서 S씨에게는 그 두 수의 합을 말하고, p씨에게는 그 곱을 말했다.
    그리고는 둘 중에서 누구든 한 사람이 다른 한 사람에게 한 번만 말을 걸 수 있다는 조건을 붙였다. 물론 자신이 알고 있는 합이나 곱에 대해서 일체 힌트 같은 것을 던져서는 안된다.
    두 사람은 잠시 동안 묵묵히 생각에 잠겼다. 그러다가 S씨가 먼저 입을 열었다. "나는 그 두 수의 합을 들었을 뿐이므로 곱을 알고 있는 당신이 부럽지만, 하기야 당신도 그 곱만으로 는 그 두 수가 무엇인지 알 수가 없죠 ?
    " 그 말을 듣고, 한참 동안 골똘히 생각하고 있던 P씨는 이윽고 자신 있는 얼굴로 대답했다. "응, 알았다 ! 당신이 말해 준 덕택입니다. " 이 말을 듣자 S씨도 "나도 당신이 말했기 때문에 답을 알았습니다 ! "고 얼굴을 폈다.
    그 자리에 함께 있던 참석자들은 두 사람의 선문답과도 같은 대화 속에 어떻게 해답의 실마리가 숨겨져 있는지 도무지 알 수 없었다.그럼 주어진 두 수는 무엇일까 ?

  • 오달원 · 1067183 · 08/28 11:28 · MS 2021

    합을 알고 있는 수학자 A가 '곱만으로는 그 두 수를 알 수 없다'고 했을 때, A는 그 두 수는 소수가 될 수 없음을 알고 있었으며, 그는 두 소수의 합이 아니라는 것을 수학자 B에게 알려 준 것이 된다.
    "2보단 큰 짝수는 합이 두 소수의 합으로 나타내어진다"라는 유명한 골드바흐의 추론이 있는데 실제로 50보다 작은 짝수는 모두 간단히 두 소수의 합으로 나타낼 수 있다.
    그런데 2도 역시 소수이기 때문에 수학자A가 알고 있는 합은 2를 뺀 나머지가 소수가 아닌 홀수이다.(만일 짝수나 소수이면, 소수+소수가 되어버린다) 따라서 수학자A가 알고 있는 합은
    11,17,23,27,29,35,37,41,47
    중의 어느 하나가 된다.
    하기야 수학자B는 그 합이 50보다 작다는 사실을 모르기 때문에, 처음의 수학자A의 이야기로부터 알 수 있는 것은 두수의 합은 이것들 이외에
    51, 53,57,59,65,....
    등 을 덧붙인 것 중의 어느 하나라는 사실이다. 이들 수를 가령 "가능적인 합"이라고 하자.
    결론부터 말하자면 이 두 수는 4와 13이다
    이것을 증명하기 위해서는 먼저 이 두 수일때, 조금전의 두 사람의 대화가 성립함을 밝히고, 그 다음에 수학자A가 나도 알았다고 말할 수 있기 위해서는 수학자A가들은 합이 17이어야 한다는 것을 보이면 된다.

  • 오달원 · 1067183 · 08/28 11:28 · MS 2021

    두 수가 4,13 이라고 하면 수학자B가 들은 곱은 52가 된다. 그런데 짝수끼리의 합은 짝수이므로 "가능적인 합"이 될 수 없다. 그러므로 본래으 두 수는 곱이 52가 되는 1보다 큰 짝수와 홀수이어야 하고, 그러한 인수분해는 4와 13밖에는 없다. 이 합 17은 "가능적인 합"이기 때문에 수학자B는 이것이 본래의 두 수라는 것을 알았던 것이다.
    수학자A가 들은 합은 17이다. 그는 수학자B가 "알았다"고 하는 말은 듣고 자신이 수학자B에게 알린 정보를 새삼스럽게 알아차린 것이다. 그 정보를 바탕으로 그는 수학자B의 추론을 이렇게 더듬었을 것이다.
    두 수는 2와 15일까? 만일 그렇다면 곱은 30으로, 그 분해인 5와 6의 합도 "가능적인 합" 11이기 때문에 이 둘 중의 어느 것인지 판정할 수 없게 된다.
    두 수가 3과 14일때도, 곱 42의 분해로서 2와 21이 있으며, 그 합도 "가능적인 합"이 된다.
    마찬가지로 4와 13 이외의 두 수로서 합이 17이 되는 것은 다음과 같이 모두 그 곱을 다른 방법으로 인수분해 할 수 있으며, 그 경우마다 그 합이 "가능적인 합"이 된다.
    5*12=60=3*20
    6*11=66=2*33
    7*10=70=2*35
    8*9=72=3*24
    따라서 수학자A가 들은 합이 17인 경우에는 "가능적인 합"에 대한 정보를 듣고 수학자B가 알았다는 두 수는 4와 13뿐이라는 것을 수학자A도 알아차린 것이다.
    역으로, 수학자A가 들은 합이 17이외의 경우, 수학자B가 "가능적인 합"에 대한 정보로부터 두 수를 찾아내는 가능성은 항상 두가지 이상이 된다. 예를 들어, 수학자A가 들은 합이 11이었다고 하자. 이때, 두 수가 3과 8이건 4와 7이건, 이것들의 곱 24와 28의 "가능적인 합"이 되는 인수분해는 꼭 한가지 밖에 없다. 따라서 어느 것이건, 수학자B는 본래의 두 수를 알 수있지만, 수학자A에게는 어느쪽인지 판가름 할 수 없다.
    17이외의 모든 합에 대해서는 모두 꼭같다. 즉,
    23=4+19=16+7
    27=4+23=8+19=16+11
    29=4+25=16+13
    35=4+31=16+19
    37=8+29=32+5
    41=4+37=16+25
    47=4+43=16+31
    (4*25의 또 다른 분해 20*5도, 16*25의 또 다른 분해 80*5도 인수의 합이 "가능적인 합"은 되지 않는다.)
    따라서 수학자A가"나도 알았다"고 말할 수 있기 위해서는 들은 합이 17이어야 한다.
    그러므로 본래의 두 수는 4와 13이다.

    신박해서 메모장에 카피해놨었었어요 ㅋㅋㅋ

  • 검은황소 · 1114373 · 08/28 12:39 · MS 2021

    그저 감탄..와..

  • sa이코패스 · 1325705 · 08/28 15:06 · MS 2024

    경시수학에 많이 있는 대화형 유형이군요

  • 펭귄사람 · 848765 · 08/28 15:38 · MS 2018

    아씨 자연수구나 ㅋㅋㅋ

  • DIEIN · 1256291 · 08/28 17:13 · MS 2023

    초딩 때 상위권수학 960 하면서 저런 유형 많이 봤더라죠..

  • Capablanca · 1057505 · 08/28 22:32 · MS 2021

    B가 전달받은 값은 두 소수의 합 또는 1차이나는 자연수의 곱 꼴로 표현이 불가능하다... 까지 생각하고 뇌 정지..