Curl-Div
게시글 주소: https://i9.orbi.kr/00069376678
Curl-Divergence lemma라고 함수열의 수렴에 대해서 이야기 하는데 희한하게도 Curl과 Divergence에 bound를 주는 것을 가정으로 하고 있다. 직관적으로 이게 어떻게 연관되어 있는지 잘 와닿지 않는데, 일단 statement 먼저 보자.
The Curl-Div lemma. Suppose $u_m\rightharpoonup u, v_m\rightharpoonup v$ weakly in $L^2(\Omega;\Bbb R^3)$ on a domain $\Omega\subset\Bbb R^3$ while the sequences $\operatorname{div} u_m$ and $\operatorname{curl} v_m$ are relatively compact in $H^{-1}(\Omega)$. Then for any $\varphi\in C^\infty_0(\Omega)$ we have
$$\int_{\Omega}u_m\cdot v_m\varphi dx\to\int_{\Omega}u\cdot v\varphi dx$$
as $m\to\infty$.
여기서 나오는 $\cdot$ 은 Euclidean space에서의 내적을 의미한다. Statement의 의미를 다시 말하면, 미분에 bound를 줘서 nonlinear expression 의 weak continuity를 얻어내는 것이다.
이걸 differential form의 언어로 바꿔서 표현을 하기 시작하면, 이 curl과 div에 boundness 조건을 주는 것이 weak convergence에 어떤 영향을 주는지 좀 더 직관적으로 드러난다.
$M$을 closed oriented smooth $n$-manifold라고 하자. 이제 $u_m\rightharpoonup u, v_m\rightharpoonup v$ in $L^2$ such that $(d^* u_m), (dv_m)$ 들이 $H^{-1}$에서 relatively compact라고 하자. 이 조건은 위의 Curl-Div lemma에서 Curl과 Div의 relative compactness와 대응된다. $u_m, v_m$을 $u_m - u, v_m - v$로 바꿔서, $u = 0, v = 0$으로 가정할 수 있다. 그러면 Hodge decomp.에 의해,
$$u_m = da_m + d^* b_m + c_m,$$
$$v_m = df_m + d^* g_m + h_m,$$
where $c_m,h_m$ are harmonic 1-forms and $a_m \rightharpoonup 0, b_m \rightharpoonup 0, f_m \rightharpoonup 0, g_m \rightharpoonup 0$ in $W^{1.2}(M)$, $c_m \rightharpoonup 0, h_m \rightharpoonup 0$ in $L^2(M)$ 이런 것을 얻을 수 있다.
Hodge decomp.의 consequence중 하나가 $M$위에서의 space of harmonic 1-form들의 공간은 locally compact이다. 따라서, smooth하게 $c_m \to 0$, $h_m \to 0$ 된다. 또한 가정에 의해서 $\Delta a_m = d^* u_m, \Delta g_m = dv_m$이 $H^{-1}$에서 relatively compact이기 때문에, $(da_m),(d^* g_m)$은 $L^2$에서 precompact하게 들어가있다. 따라서,
$$u_m = d^* b_m + o(1),\quad v_m = df_m + o(1),$$
in $L^2$가 된다. 또한,
$$\langle u_m,v_m\rangle_g \omega_g = \ast (\langle d^*b_m, df_m\rangle_g) = (d\ast b_m)\wedge df_m = d((\ast b_m)\wedge df_m),$$
임을 알 수 있다. 여기가 그 "미분"의 모습이 드러나는 핵심적인 부분이다.
구체적으로 말하진 않겠지만, Rellich theorem 이라는 것이 있는데, 이것은 $b_m\to 0$ in $L^2$임을 imply한다. 따라서
$$\int_M \langle u_m,v_m\rangle_g\varphi\omega_g = \int_M d((\ast b_m)\wedge df_m)\varphi + o(1) = (-1)^n \int_M (\ast b_m)\wedge df_m\wedge d\varphi + o(1) = o(1).$$
따라서 앞선 Curl-Div lemma와 같은 결론을 낸다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
탐구연계 0
탐구 수완 연계는 어느정도 유의미한가요.. 물리 화학 기준으로여 물리 수완 아직...
-
박석준T 듣는데 수업에서 연계 예상 이런건 잘 안 해주셔서... 출제기조 자체...
-
ㅈㄱㄴ
-
이건좀
-
얼버기 2
늦버기...
-
시작
-
강대x 2컷~2컷+8정도 나옴
-
오늘도 파이팅.
-
에구궁 졸려 1
준비 갈 완료
-
하면 얼어죽을듯
-
하늘을 찌르는 SOXL + 트럼프 밈주 + 환율 폭등 1000만원으로 하루만에...
-
기하는 풀이 없는 것 같아서 올려봅니다. 28 빼고 시간재고 푼 풀이고 28은...
-
얼버기 2
앞줄 어느방은 2시부터 4시간동안 알람을 안꺼??
-
얼버기 8
후후후
-
와 2도야 미친 2
ㄹㅇ 세종대왕님인가 ㅈㄴ 춥네
-
독서 사회,경제:아웃소싱->국제적으로(오프쇼어링)+경상수지...
-
일탈행위의 발생과정에서 나타나는 상호작용에 주목하는가? 에 맞는게 차별적교제이론...
-
1. 대망의 첫 수능 이후 의과대학 성적과 수능 성적의 상관계수를 내본 논문의...
-
꼼꼼히 한다 하면 개념 얼마나 걸려요..???
-
얼버잠 1
다들 평안한 밤 되십시오. 소등하겠슴다.
-
책 왕창 빌리고 샀는데 시간 순삭이넴 글고 안 유명한데 재밌는 책 발견하면 좀 짜릿함ㅎ
-
진짜 집에 아직도 있는게 소름이넹 ㅋㅋㅋ
-
얼버기 1
아파ㅓ 일찍자고 이제 일남
-
최저러라서 마지막 일주일동안 생윤 커리 하나만 더 듣고 마무리하고싶은데 뭘 하면...
-
세지 정법 둘 다 문제스타일이 굉장히 물화생지윤리사문역사에 비해 마음에 듦 ㅋㅋ
-
쿠팡 몰빵 4
누가 이기나보자
-
예비 고3입니다 4
지금 현재 10모 백분위 대략 99 초반이 떳는데 고3되면 어느정도 되나요?
-
점수가 맨틀 뚫고 내핵까지 들어가는데 그냥 기출 복습이나 할까요.. ㅠㅠ
-
목표대학도 학과도 딱히 없는데 수학이 오를것같은데 자꾸 안오르고 국어성적이 아깝고
-
잠 안오면개추 1
나부터
-
저랑 잡담하실분 4
못 잘 거 같음 ㅛ.........
-
공부 0
화났다가 재밌다가 괴롭다가 즐겁다가 힘들다가 신나다가 롤러코스터 상태
-
이해원 제외(이미 품)
-
창문열고 잔다.
-
ㄹㅇ 크게 먹으면 두 젓가락 정도 나올 양인 듯.. 좀 아쉽네
-
영하 2도 ㄷ
-
똥 먹어본 사람도
-
으음 10
귓불도 아팠는데 아웃컨츠나 귓바퀴는 무리인걸가... 스트레스받으면 왠지 뚫고싶어지는
-
25LEET 솔로우 경제성장 모형 2311 기초대사량 2211 브레턴우즈 모두 문제...
-
배 아파 2
잠 늦게 잘 때마다 배가 아파
-
그림 20
굿
-
개인적으로 2311 게딱지와 2211 브레턴우즈의 추론은 결이 같다고 생각 1
둘다 거기서 막 화살표 치고 그런거 보다 지문 예시 끌고와서 처리하는게 훨 나을텐데...
-
예전에는 18시간 안 자는 게 기본이었고 많게는 24시간까지 새는 거 기능했는데...
-
수능 D-7 5
ㄱㄱ
-
고2 10모 빼고 다 1등급인데 듣고 가야할까요? 키스로직만으로 abps체화 할 만 한가요
-
공황장애 극복법 9
과거 생각나거나 지인 마주칠때마다 심장 두군거리고 숨이 안쉬어지는데 어캐...
-
ㅎr 사문만 되면 이제 괜찮은데..
-
문과 선택과목 0
정시 사문세지 조합 어떤가요 윤리 안맞아서 세지로 갈아타려하는데 흔한 조합인가요?...
-
7할 정도는 아기세 알 듯
첫번째 댓글의 주인공이 되어보세요.