[동안고] 수학(하) 기말고사 손풀이 + 해설 영상
게시글 주소: https://i9.orbi.kr/00070065089
2023 동안고 1-2 수학(하) 기말.pdf
안녕하세요. 어수강 박사입니다. 오늘은
[동안고] 2023년 1학년 2학기 수학(하) 기말고사 손풀이 + 해설 영상
를 포스팅 하도록 하겠습니다.
동안고 학생이 아니라도, 기출문제를 한 문제 한 문제 '정확'하게 풀어보는 것이 시험대비뿐 아니라 수학 실력을 쌓는데도 크게 도움이 될 거라 생각합니다. 학생이라면 풀이를 보기 전에 아래 파일을 다운로드해서 먼저 풀어볼 것을 강력하게 권장합니다.
[원문 출처] https://blog.naver.com/math-fish/223667703896
PS. 고난도 문항 해설 영상은 원문에서 확인 가능합니다.
그럼 문제와 풀이를 살펴볼까요?
1 페이지는 무척 쉬우므로 설명은 생략합니다.
2 페이지를 볼까요?
[5번 문항] 원에 내접하는 삼각형이 직각삼각형일 필요충분조건이 지름을 한 변으로 하는 것이므로 지름을 기준으로 생각하면 쉽게 풀 수 있겠죠?
[6번 문항] 접근선을 그려놓고, x절편 또는 y절편을 중심으로 생각하면 되겠죠? (왜 그럴까요!?ㅎㅎ)
[8번 문항] a, b에 대한 식을 세운 후에 (미지수가 2개인 식의 최솟값을 구하기는 어려우므로) 미지수를 하나로 줄이고 생각하면 쉽게 풀 수 있을 것 같네요 :)
구체적인 풀이는 다음과 같습니다.
이제 3 페이지를 볼까요?
[9번 문항] 8명을 동시에 생각? 어려우면 하나씩!! 먼저 양 끝에 올 선생님을 정하고, 기장과 부기장 중 누가 더 앞에 올지, 그리고 기장과 부기장 사이에 어떤 학생이 올지 등을 차근차근 생각하면 '곱의 법칙'만으로 쉽게 풀 수 있습니다.
[10번 문항] "모르는 것을 문자로 놓는 것이 중요하다!!"는 사실은 아무리 강조해도 지나치지 않습니다. 이 문제에서 주어진 일차함수를 h(x)라고 세팅하면 쉽게 풀 수 있겠죠?
PS. 두 번째 풀이로 f(1/2x-3)와 ag(x)+b가 서로 역함수이므로 합성해서 항등함수가 됨을 이용해도 쉽게 풀 수 있습니다!
[11번 문항] 하나씩 차근차근 하면 쉽습니다!
[12번 문항] a>0인 경우, f(x)의 y절편이 1이 되어야만 하고, 그러면 y=1과 y=f(x)의 그래프의 교점이 2개가 되므로 모순이 됩니다. 따라서 a<0인 경우만 생각하면 되겠죠?
구체적인 풀이는 다음과 같습니다.
이제 4번째 페이지를 살펴볼게요!
[13번 문항] k의 부호에 따라 경우를 나누면 쉽게 풀 수 있겠죠?
PS. 절댓값 안의 식의 부호에 따라 경우를 나누고, y=f(x)의 그래프를 이용해도 쉽게 풀 수 있습니다!
[14번 문항] 조금 까다로운 문항입니다. (나) 조건을 만족하는 x의 값이 될 수 있는 것은 x=1, 2, 3에서 2개 뿐이므로 {1, 2}, {1, 3}, {2, 3}의 세 가지 경우로 나누어서 생각하는 것이 좋은 전략이 될 것 같네요! 자세한 해설은 영상을 참고해주세요!
[15번 문항] 함수의 그래프를 생각해보면, 제한된 범위에서 이차함수의 최대*최소를 구하는 문제와 본질적으로 같은 문제임을 쉽게 알 수 있습니다. 따라서 꼭짓점이 주어진 범위 내에 포함되는지, 아닌지에 따라 경우를 나누어 풀면 되겠죠? 자세한 해설은 영상을 참고해주세요!
[16번 문항] 16번 문항은 사실 보기에 답이 없습니다. (나) 조건을 초콜릿을 1개씩 나누어 주거나, 1개&3개로 나누어 주는 경우 고려하면 답이 288이 되지만, A 상자에 1개, B 상자에 3개, C 상자와 D 상자에 0개를 넣은 것을 홀수개씩 넣은 것이라 할 수 있을까요? 0은 홀수가 아니므로 제외시켜야 하고, 제외시키면 답이 96이 되는데 이는 보기에 없으므로 출제 오류입니다.
구체적인 풀이는 다음과 같습니다.
마지막으로 5 페이지를 볼까요?
[17번 문항] 여러 개의 f(x)를 포함한 식이나 그래프는 복잡하므로 f(x)=t로 치환해서 간단히 한 후 풀면 되겠죠?
[18번 문항] 두 조건을 동시에 만족하는 것을 고려하는 것이 어려우므로, 2번 조건을 먼저 생각하고, 여조건을 이용해서 풀면 쉽게 풀 수 있습니다. 자세한 풀이는 해설 영상을 참고 해주세요 :)
[논술형 1번] 두 무리함수의 꼭짓점이 y=2x 위를 움직인다는 것을 이용하면! 평행이동을 이용해서 쉽게 풀 수 있습니다.
[논술형 2번] 작년 신성고 중간고사 및 올해 동안고 중간고사에 출제된 문항이네요! (출처 : 22년 11월 모의고사) 구간 별로 정의된 함수를 한 번에 생각하기 어려우면? 하나씩 생각하면 되겠죠? a 이상인 범위가 더 쉬우므로 먼저 생각한 후에, a 미만인 경우를 생각해야 겠네요. 이때, 일대일대응이므로 수평선, 수직선 테스트를 생각하면 쉽게 풀 수 있겠죠?
지금까지
[동안고] 2023년 1학년 2학기 수학(하) 기말고사 손풀이 + 해설 영상
를 알아보았습니다. (초고난도 문항은 없는 것 같지만) 생소한 형태의 문항들이 4-5 페이지에 다수 포함되어 있기 때문에, 문제와 그 풀이를 유형화해서 기계적으로 공부한 학생들의 경우, 시험에서 크게 당황해서 시간만 뺏기고 답을 내지 못하는 경우가 많았을 것 같습니다. 반면, 기초가 튼튼한 상위권 학생들은 무난히 80점 이상을 받을 수 있는 시험이었을 것 같네요. 기본에 충실할 것을 강력하게 권장합니다!
고등수학은 열심히'만' 하는 것으론 충분하지 않습니다. 오히려 열심히 공부하는 데도 성적이 떨어지고, 더 이상 희망이 보이지 않으면 수학을 포기하게 될 가능성이 높습니다. 문제와 그 풀이를 유형화해서 답을 내는 공부를 하고 있고, 이 방법으로 이미 한계에 부딪혀서 원하는 결과가 나오지 않는 상황이라면 공부 방법을 바꿔야 합니다!
오늘 포스팅은 효과적인 공부 방법에 대한 포스팅 링크로 마치도록 할게요. 그럼 다음에 또 만나요! :)
1. 거의 모든 고난도 문항에 즉각 적용 가능한 치트키 1 : https://orbi.kr/00062136893 (feat. 여. 동. 어. 하!!)
2. 거의 모든 고난도 문항에 즉각 적용 가능한 치트키 2 : https://orbi.kr/00062194726
3. 문자의 개수 vs 식의 개수 (feat. 연세대) : https://orbi.kr/00064497772
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
약네랜 2기 특 6
아무도 여기에서 엔딩낼줄 몰랐을듯
-
1월 31일까지 0
IELTS Academic 8.0 (each 7.0) 드가자~
-
스펙 평가좀뇨 3
187 47 80 09년생 고려대 소프트웨어 재학 누백 3 어떰뇨
-
저격에 앞서 우선 저의 성급했을 수도 있는 언행들에 대해 짚고 넘어가겠습니다. 1....
-
TEAM05 4
있어요?
-
차은우가 대성마이맥 광고하는거 뭔가 웃기다ㅋㅋㅋㅋㅋ 5
수능따위 상관없이 인생 잘 살 사람인데
-
옯서운 이야기 3
내 국수점수는 명지대급이지만 내 탐구점수는 메쟈의급임
-
형아라고부를수있잖음
-
순환론이 운명론적 관점인 이유는 이해 되는데요 진화론이 운명론적 관적이 아닌 이유를...
-
언매 84 확통 81 영어 2 생윤 48 사문 50 전부 원점수임 동생이 중대...
-
아기 현역 달린다
-
너무함뇨
-
ㅠㅠ
-
지금 이정도면 실채점 후 다 빨간불인가요?
-
냥대 논술 0
오전1오후1이랑 오후2랑 난이도 차이가 큰가요?
-
team 98도 ㅎㅇㅌ 10
가자뇨
-
대성 들을꺼고, 공통은 이미지t 하다가 어느정도 개념이 잡히면 김범준t로 넘어갈...
-
저녁 0
-
뭉탱이로.
-
ㅇㅈ함뇨 2
ㅇㅈ
-
임요 임뇨 4
신기하게 ㄴ이 첨가가 됨
-
수능날 멘탈 관리 못 해서 2등급 뜨긴 했지만... 이때까진 올해 6모 빼고 1등급...
-
떴으니까 올리지 경희도 합격했음......
-
걍 미적 달린다 1
성공 여부에 상관없이 군생활은 녹일 수 있겠지
-
ㅇㅇ
-
틀린문제가 15 19 31 35 ㅋㅋㅋㅋ 시발
-
이궈궈던ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
1. 학생회관 엘리베이터는 불과 4년 전에 바뀌었다. 그 전에 설치 된 엘리베이터는...
-
송도에서 반수하는거 거의 불가능아닌가요 휴학한다고 해도 실패하면 다시 송도에서 시작해야하는거죠?
-
메토리 ㄱㄱ? 2
이름을왜그따구로부르세요 개얼탱
-
지금 의미 없는건 알지만 불안해서 진학사, 텔레그노시스, 고속 다사서 봤는데 고속은...
-
제발
-
보보봇치 2
그사라 왜 안보이지..
-
가상자산 해킹 북 정찰총국이 주범..."핵·미사일 돈줄" 2
[앵커] 북한의 해킹조직이 우리나라 가상자산 거래소를 탈취한 사실이 확인된 건...
-
"낮에 펼쳐졌던 마법의 세계가 밤으로 이어진다는 스토리를 담고 있다."
-
숙대 통계 2
수학50%반영함
-
정x민쌤듣는데 주간지는 인강민철 사서 풀어도 괜찮을까요?? 문풀용으오만 쓰려고요
-
이맛이로구나~~
-
어떤 건가용?? 국영못 수탐잘이었는데 항상 교차가 그냥 넣는 것보다 불리하게...
-
뭐 잘못한거도 없고 그저께 까지도 디엠했고 멀리 살아도 자주 만나는 친군데 생일...
-
제발 저격 좀 해주셈뇨
-
수학 재수 0
수학은 거의 노베고 국어영어는 자신있어서 거의 모든 시간을 수학에 쏟을건데...
어렵네 시험
내신 시험지는 저작권 문제 없나요?