함수추론 자작문제
게시글 주소: https://i9.orbi.kr/00070662243
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
남들이 나보다 똑똑할 수 있다는 상상을 하지 못하는 것 4
이번 칼럼은 매우 짧은 칼럼이 될 것 같네요 ^^ 전 최근 메타 인지 능력의...
-
탑신병자가 되는 과정 14
정글이랑 서폿만 하다가 탑을 해봤는데 라인전 잘함 상대 정글 갱에 죽음 다시...
-
현실에선 올 1등급은 켜녕 평백 90도 만나기 ㅈㄴ 어려움. 그리고 그 현실에서...
-
서울 잘아시는분 4
조만간 혼자 가서 학원친구들도 좀 보고 한 3일정도는 잇다오고싶은데 숙소같은거...
-
롤할 때 특이점 2
탑이 화가 많다던데 원딜하면 더 화가 많이나는 것 같음
-
ㅇㅇ
-
군대에서 수능 or 편입에 관해 조언 부탁드립니다. 1
안녕하세요, 다음주 이맘때, 1월 13일자로 논산 훈련소로 입대하는 화생방병입니다....
-
그러하다. 다들 기하합시다
-
왜 노조들 시위할 때 저렇게 했는지 이해했을 사람들 개많았을 거임 ㅋㅋ 무지성 반달...
-
저는 사실 특별전형으로 대학을 갈 수 있어요... (ㄹㅇㄹㅇ 찐 사실임...)...
-
슬퍼요
-
현역때 생윤 + 한지 했었는데 생윤으로 통수 당해서 재수땐 쌍지 해보려고 하는데...
-
국어 인강이 잘 안받는거같아서 피램 풀커리 독학으로 해보려 하는데 확신이 잘...
-
쿠바나 샷이 좋네요..
-
반수한다면 새터 ot 안가는게 정배인가요?
-
일반고 내신 1.7이고 서울대를 가고 싶음. 근데 우리 학교가 생기부를 잘...
-
으흐흐
-
방금 역대급 방구낌 15
미치겟슴
-
그게 뭐임
-
역시 아이야
-
[AI 세특 작성]세특 작성 노하우 5 - 마무리 및 요약 0
지금까지 학생부 세특의 중요성과 작성 요령, 구체적인 사례 등을 살펴보았습니다....
-
*
-
님들 다 틀딱이라는 거임
-
연세대 약대 2
연세대약대 백분위70%가 96.25인데 올1이면 연대약대 가는거 아닌가요
-
전 고2때 오르비에서 고3들 고민상담 받아주고 다녔음 7
고2 정시파이터들이 자기객관화 잘 안됨…ㅋㅋㅋㅋㅋㅋ 나도 수능준비하는데 경쟁자로...
-
맞팔해주세요 8
팔로워 늘려서 한탕 해먹게
-
현우진 강기원 2
강기원 미적 현우진 뉴분감 병행 가능한 양인가요?
-
제가 재수 시작하는 주 주말에 오래 좋아한 연예인이 팬들 모아 영화 단체관람도 하고...
-
재수 영어 노베 2
올해 수능에서 영어 5떴습니다 문법 같은 경우는 괜찮은데 독해와 특히 단어가 많이...
-
정신은 멀쩡한데 머리가 깨질듯 아파오고 얼굴이 새빨개짐
-
쌤으로 등록할 수 있음요? 근데 좀 학생들이 있나요?
-
사람 불안하게 어..
-
85년생이래요
-
입학하자마자 휴학인거임? 의대알못이라
-
그냥 소주는 못마시겠음...
-
수시로 점공 확인중어둠의 표본들아 제발 점공 입력좀 해라
-
닉변 1
완
-
정시 추합 마지막날까지 다중등록으로 홀드하고 끝난뒤에 원서등록 취소해서 추가모집으로 보내면됨 ㅇㅇ
-
서울대부터 쫙 휴학 한거임?
-
생지러 n수생들 2
지금 머풀어요?
-
올해 갔어도 03이라 틀딱인데 내년에는 더 틀딱일 거 아니야
-
칼국수 맛집에 빵집 개많음 걍 수도로 하자
-
만약 진짜 주량이 반병이라면 한잔이라고 해야함
-
어떻게 매를 얼릴 수가 있음 너무하네
-
이걸 실제로 1월에 쓰곤 했던ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아 그립다.
-
동사 누구들음 8
현역때 이다지 풀커리탔음 근데 이번 수능 동사에서 아무리 생각해도 이거 다맞으려면...
-
아 점공 ㅅㅂ 0
하나 밀렸다......내 뒤로 와 제발......
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요
문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요
아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234