-
f(x), g(x)의 단순 차수비교 문제 같은데요, 문제가 이렇게 짧은데 어떻게...
-
본인이 메디컬이나 스카이인데 26수능본다하면 들어오세요 12
저기요, 수능 그만치세요 님들때문에 국어 수학 과탐컷 야랄난거 안보이시나요??...
-
투표 ㄱㄱ
-
저 40만덕으로 6
이거 사고 싶은데 덕코 나눠 주실분 구함뇨 산 뒤에 후기 적어드림뇨
-
아니 그럴거면 처음부터 사탐을 해서 급간을 올리지 왜 더 어렵고 공부도 많이해야하는...
-
Bb 0
Cc
-
하
-
아이묭 8
.
-
돈이 없는상태면 67덬 167덬 20덬 같은 싼걸 여러개 삽니다 그러면 사람들이...
-
덕코 받아봐야지 0
ㄱㄴ?
-
ㄷㄷ
-
안녕하세요 중앙대학교 소프트웨어학부 (준)제53대 학생회 ‘S_Way입니다....
-
쿼티님 6
-
뽀지부착완료. 3
~흥우
-
첫 레어 5
대 시 립
-
레어 확인 5
흐흐
-
서울 자취비용 0
만약 서울에서 자취하면 돈이 얼마나 들까요
-
이원준 140,848 xdk 민주당 138,533 xdk 케플러는 복사버그걸림...
-
war? 9
-
서강 서강아 1
오늘은 해주겠지?
-
대 지 아 님이 만드신 미쿠 사세요~~~ 이뻐보이는 미쿠 사세요~~~~
-
충분하다고 생각하시나요???
-
씹덕 친구가 없음 죄다 인싸뿐이야
-
영어 인강 0
듣고 계시는 영어 인강이랑 몇 등급 때 듣기 시작하셨는지 알려주세요
-
남돌파시는분 8
쪽지쥬세뇨
-
대성팔려서 흑자전환!!
-
걍 3/1제대해도 입학/복학 가능한가요??
-
연경제 진짜로 난리났네 23
점공 세어보니 추합 최소한 20명 넘게 도는데 이러면 687까지는 무조건 뚫렸네요...
-
딱대 1시수업간다
-
ㅋㅋㅋㅋㅋㅋㅋㅋ
-
등차수열 자작! 4
진짜 깔끔하게 잘 만들었다고 자부해..
-
개존잼이라 이어서 꾸려고 계속 잤는데 일어나니까 기억이안남ㅅㅂ 픽사 입사할뻔
-
컨관좌 보유 레어 16
사면 어케되나요
-
대학급간이 확확 바뀌넹. . .
-
경희대라 가능성 없을거같긴한데 혹시라도 조발나오면 문자주나요?
-
딮기랑 같이 갖고있으면 맛있겠는데
-
ㅈㅈ 4
힘들어요
-
큰 진도 계획은 짜뒀는데 나도 자료 뭐뭐 가져갈지 등등은 그 주에 정해두진 않고...
-
음음 그래그래 0
몇 개 가져오마
-
제발 승인되면 좋겠다..
-
눈누난나 신나는 미팅 시간
-
올수기준
-
중립기어랑 빽다방 쓸만한데..
-
정시는 조발하라
-
이루매당 3
ㅎㅎ
-
오르비 관련주 1개 + 남돌 2명 + 대슈냥 일시적 보유
-
외대가즈아
-
진짜 요즘에 3
Nft인기잖아 가상화폐하고 덕코 상장해주면 안댐??? 우리나라법이좀그렇긴한데
-
현실로 만들어줄 분 구해어ㅡ.ㅡ 즐거운 점심 보냐세여
-
ㅠㅠㅠㅠㅠㅜ
고등학교내용 아닐걸여
직교좌표계에서 y축 대신 허수축 x축 대신 실수축 놓는거 이럼 모든 복소수를 평면에 표현가능
z=a+bi일 때 (a,b)에 표현.
이걸 응용한 유형문제가 있나요?
a+bi꼴을 평면상에 표시한거로 아는데...
다만 저걸 고등학생이 어디서 듣고 왔는지는 모르겠음...
학원에서 이걸로 문제 푸는 걸 알려줬다는데....
도대체 뭔 어둠의 스킬을 알려준거야
드 무브아르의 정리 그런건가?
일본에선 고딩때 배운다던데
갈수록 복잡해지네요.....
하 일본한테도 밀리는데 여기서 교육과정을 더 깎아먹는다니
신기하네….
겨꺄애
밑이 음수인 지수함수같은거 함 찾아보시면 관련설명 나옴 ㄱㄱ
교과외
근데 별로 안 어려워요 구글에 검색해보시고 설명해주세요 학문적 호기심이 있는 친구네요!
이걸 응용해서 푸는 문제 유형이 있을까요? 학원에서 배웠다길래
오일러 공식때문에 각의 합이 복소수끼리의 곱으로 표현되거든요. 그걸 이용할 수 있지 않을까요
어렵네요...고1한테 뭔 이런 걸....
아.. i^4 이거 할때요?
그거 필요없어요
너무 복소평면을 과소평가하는 가르침이에요 그건
복소평면 자체에 대해서 궁금한게 아니라면 굳이 알려줄 필요 없을 것 같아요
아아 그런가요 그냥 보고 넘기라 해야겠네요
복소수 거듭제곱할때 쓰는건데 필요없어요
그냥 계산으로 밀고 나가는 게 더 편한 풀이일까요?
편하기야 복소평면이 100배 편한데 고1 1학기 수준에서는 그렇게 숏컷을 써야만 내신이건 모의고사건 100점을 받을 수 있는 건 아님
그런가요..그냥 대충 넘겨야겠네요
25수특 미적에 쓰면 생각하기 편한 문제는 있는데
딱 거기까지
유튜브에 오일러 공식 설명하는 영상 (Dmt part)에도 간략히 언급 되긴 해요
고딩 선에서 문제 푸는데에 필요할까 싶긴한데
먼가 먼지 알 것 같은데 기억이 안 나네요 ㅋㅋ. 친구가 갓반고라 거기서 복소수할 때 드무아브르의 정리를 즐겨썻던 그거 같은데, 제 기억에 그렇게 대단한건 아니였던거 같아요.
딱 내신용.. 그때 말고는 대학가서 배우지 않는 이상 존재조차 까먹고 살아요
내신대비학원이라 알려줬나보네요
고딩과정에서는 딱히 막 사용할 필요가 없는.. 없어도 잘할수있습니다
z=x+yi
한번도 쓴적 없음
드 무아브르 정리가 중요하죠ㅡ주기성을 암산가능
근데 삼각함수 선행 정돈 해둔 친구여야 잘 응용할 수 있어요
삼각함수 모르는 애한테는 굳이 설명해주면 복잡하기만 할 거 같네요...ㅋㅋㅋ
댓 다는 사람들도 잘 모르는 거 같은디
복소평면 (complex plane)이라는 건
C = R x R
즉, 실수체의 곱집합이라고 본 겁니다
복소수 집합을 실수의 순서쌍(Ordered pair) (x, y)들의 집합으로 보고
a,b,c,d, k를 실수라고 할 때
k(a, b) + (c, d) = (ka + c, kb + d)
(a, b)•(c, d) = (ac - bd, ac + bd)
로 정의하면
우리가 아는 복소수 연산과 동일한 연산 구조를 가진 체를 이룹니다.
이렇게 했을 때 좌표처럼 평면에 점으로 복소수를 나타낼 수 있는데 그걸 복소평면이라고 부릅니다.
필요 없는데 가르치는 이유는
복소수의 곱연산이 회전변환(크기도 고려해야 하긴 합니다)이 되기 때문입니다.
가령 방정식 x^3 - 1 = 0의 해 w 같은 경우 평면에 나타냈을 때의 동경의 각이 특수각이기 때문에 거듭제곱을 (ex. 60도씩) 회전으로 생각해서 간단하게 연산을 할 수 있습니다.
윗분이 말씀하신 드 무아브르의 정리가 복소수의 거듭제곱을 회전으로 생각할 수 있다는 정리입니다
대학에서도 복소해석학을 배우지 않는다면 필요가 없는 내용입니다
상세한 설명 감사드려요 :)
공업수학이라고 대2때 배우는데 공대인데도 안 배우는 과도 많음
수학(상) 복소수 단원에서 1+루트3i/2 꼴의 거듭제곱에서 유용하게 쓰임
거듭제곱을 원 회전수로 표현할 수 있어서 복소수킬러 빠른풀이에 꽤나 자주 쓰입니다
제가 고1이었을때도 많이 썼어요
복소해석학 독학 중이었는데 이 글이 딱 나오네
이 글은 딱 나오잖아?
수시충인데 1학년 내신 수학에서 되게 요긴하게 쓰여요
복소평면 쓰면 유명한 복소수 거듭제곱 안외워도 되고, 가끔식 까다로운 문제들 삼각함수에서 쓰는 일반각이나
복소평면에서 기하학으로 처리하는 문제들도 나와서 알려드리는게 좋을듯?