Orbi지형T_[점수를높이는5M.Column] Ch1.등차수열'지형도를그리다'
게시글 주소: https://i9.orbi.kr/00071309544
Orbi_Column_김지형T_수1(등차등비수열)_개념.pdf
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH1 Arithmetic sequence
Column 1: 수1 등차수열 - 중요한 기출문제 풀이 함께하기
안녕하세요! 오늘은 수학 I의 등차수열을 다루는 중요한 기출문제 풀이를 함께 살펴보려 합니다. 잠시 시간을 내어 5분 정도만 읽어보시고, 풀이 과정을 하나하나 따라가 보세요. 그러면 이 문제가 얼마나 쉽게 느껴질 수 있는지 경험하실 수 있을 거예요.
아래 풀이 내용은 제가 대치동 현강에서 직접 강의한 내용을 바탕으로, 조교님께서 꼼꼼히 정리해 주신 자료입니다. 추가로, 첨부된 파일에는 강의에서 다뤘던 개념 설명도 상세히 정리되어 있으니 참고하시면 더욱 도움이 될 거예요.
특히 이번 강의에서는 4점 문항을 효과적으로 공략하는 방법에 집중했습니다. 여러 문제를 하나의 공통된 풀이 방식(알고리즘)으로 접근했는데요, 여러분도 이 방법을 빠르게 익히시면 등차수열 문제가 훨씬 쉽고 친숙하게 느껴질 거라 믿습니다.
제가 준비한 이 자료가 여러분의 실력 향상에 조금이나마 보탬이 되길 바랍니다. 함께 천천히 익혀가며, 더 큰 자신감을 가져보세요!
(1) 등차수열의 대칭성 활용 문항
작년인 2024년 기출문제에서는 찾아볼 수 없는 유형이지만, 등차수열의 대칭성은 반드시 알아두셔야 합니다. 이 개념은 문제를 푸는 데 중요한 단서를 제공하거든요.
저는 등차수열을 일차함수로 표현해 대칭성을 조금 더 간단하게 이해하고 해결하는 풀이 방식을 사용했습니다. 이 방법은 복잡한 계산을 줄이고 문제를 훨씬 직관적으로 접근할 수 있게 도와줍니다.
천천히 따라오시면서 이 풀이 방식을 익히시면, 등차수열 문제를 푸는 자신감이 더 커지실 거예요.
[2021년 9월 평가원 문항]
[2022년 4월 교육청 문항]
(2) 특정 항의 부호를 결정해야 할 때
최근 기출문제에서는 항의 부호를 나누어 생각해야 하는, 즉 케이스를 분류해야 하는 형태의 문제가 자주 출제되고 있습니다. 이런 유형은 앞으로도 출제 가능성이 상당히 높으니, 여러분께서 특히 집중적으로 학습하셔야 할 부분입니다.
이 문항들 역시 제가 사용하는 공통된 풀이법으로 접근할 수 있습니다. 등차수열을 직선으로 표현해 각 항을 구체적으로 나타내면, 케이스를 훨씬 더 명확하고 간단하게 분류할 수 있거든요.
여러분도 이 방법을 익히신다면, 어려운 문제도 한결 쉽게 느껴지실 겁니다. 함께 차근차근 풀어가며 감을 잡아보세요!
[2024년 3월 교육청 문항]
[2022년 6월 평가원 문항]
[2023년 7월 교육청 문항]
[2024년 5월 교육청 문항]
(3) 특정 항의 값에 집중해야 할 때
이 유형은 최근 기출문제에서 자주 볼 수 있는 유형이에요. 처음에는 계산이 복잡해 보일 수도 있지만, 걱정하지 않으셔도 됩니다. 절대 어렵지 않아요!
문제에서 특정 항의 특징이 제시되어 있다면, 우리는 그 항을 기준으로 계산을 변환하는 습관을 가지는 것이 중요합니다. 이렇게 접근하면 계산이 훨씬 간단해지고 문제 해결도 수월해질 거예요.
여러분도 이 방법을 익히시면 어렵다고 느껴지는 문제도 더 자신 있게 풀 수 있을 거라 믿습니다. 함께 차근차근 익혀보아요!
[2023년 9월 평가원 문항]
[2024년 7월 교육청 문항]
(4) 다양한 등차수열의 표현
이 외에도 다양한 방식으로 표현되는 등차수열을 익히는 것이 중요합니다. 이 부분은 개념서의 등차수열 표현 Part에 잘 정리되어 있으니 참고하시면 도움이 될 거예요.
등차수열을 빠르게 인식하고, 그에 따른 공차의 의미를 빠르게 해석하는 연습이 필요합니다. 이 능력이 갖춰지면 이런 유형의 문제도 훨씬 깔끔하게 해결하실 수 있을 거예요.
참고로, 이 유형은 작년 EBS 교재에서 굉장히 자주 다뤄졌던 만큼 출제 가능성도 높으니 꼭 꼼꼼히 학습해 보세요. 여러분이 더 큰 자신감을 가질 수 있도록 저도 함께 도와드리겠습니다!
[2023년 6월 평가원]
풀이법에 대한 질문이 있으시면 언제든 댓글로 남겨주세요! 여러분의 학습에 작은 도움이라도 드릴 수 있다면 정말 기쁠 거예요.
만약 이 칼럼이 유익하셨다면 좋아요를 눌러주시고, 앞으로도 꾸준히 업데이트되는 칼럼을 보시려면 팔로우 부탁드립니다!
이번 주에는 등비수열, 수열의 합, 수학적 귀납법을 차례대로 업로드할 예정이고요,
다음 주에는 수2의 함수의 극한, 함수의 연속, 미분계수와 도함수를 다룰 계획입니다.
혹시 더 다뤄줬으면 하는 주제가 있다면 댓글로 의견을 남겨주세요. 소중한 의견 참고해서 더 알찬 내용을 준비해보겠습니다. 개인적으로 궁금한 점이 있으시면 쪽지로 문의 주셔도 언제든 환영이에요!
참고로, 오르비 인강 촬영에서도 이 내용을 정리해 깔끔하게 강의해 업로드할 예정이니 기대해 주세요.
그럼 저는 또 열정 가득한 강의하러 떠나보겠습니다! 여러분, 오늘도 화이팅입니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
투표라도해주세요 ㅜㅜ 국어 4등급짜리입니다
-
사과는 안할거 같은데 11
신뢰로 먹고 사는 장사인데… 굳이 공식적으로 인정하진 않을듯
-
익절 못하면 6
죽으면 그만이야
-
우석한약 최초합 391.5 평백94 ㄷㄷ
-
살빼야하는데 4
배고파서 컵라면 작은컵머것음.. 시대인재부엉이인형오너에 걸맞는 사람이 되어야하는데
-
덕코가 필요합니다 ㅠ
-
빌런스 컨설팅 있어야댐 16
X발x<——이새끼는 진학사를 ㅈㄴ 잘봄..
-
고잡 ㅅㅂ 664.x 들고 어문 쓴 거도 빡치는데 조발도 안 하네 ;;;
-
국어성적 정상화좀 해보려고 개빡겜 하려는데 -->최대한 집중해서 지문 최대한...
-
정시 33211 5
화작미적생윤사문 다 등급컷 턱걸이 저 정도면 어느 대학 정도 감?
-
걍 지리는데
-
산화당할 사람이 30명이나 된다고? 얼마나 빡센거임
-
세지러임에 2
바티칸 레어 이쁘군요
-
75마넌처먹고하는짓이 5마넌도안대서그러는거임 비정상적인 가격형성이 제일 문제야
-
국어 등급컷 알려주실분
-
재수의 이유도 삼반수의 이유도 그땐 모르기에 그저 치열한 날들 우린 어떤 수능을 봤었나요 언수외탐
-
뱃지 ㅇㅈ 3
조정식 뱃지ㅋㅋ
-
본인 지금까지 탐구,수학에 거의 집중하고 국어 거의 안해서 이제나마 국어 좀 정상화...
-
컨설팅으로 모든 고객이 만족스러운 결과를 얻는 건 불가능하지만 8
그 과정만 순탄했으면 이 정도로 이슈되진 않았을텐데 라는 아쉬움이 듭니다
-
무슨 풀커리타면 푸는 문제양,자료양 이런건 말할것도없고 문제퀄리티,수업난이도...
-
"다보스 포럼" 세계급 지식인들의 포럼 중국이 대만을 침공할 압력이 높아지고 있는...
-
25대비랑 26대비랑 1년인데 차이가 크진 않겠죠? 작년 교재랑 시험지들 싸게...
-
솔직히 너무 비싸서 상담받기가 좀 그랬음..
-
레어 사세요~~~~~ 10
-
레어자랑 5
저 레어 샀어요
-
잼미니들 관련 사업은 항상 2배부터 시작하기때문 교사출신~~ 사업하기 ㅈㄴ 편함
-
건축학과 0
건축학과 희망하는 07인데요 내신으론 화생미적했었는데 정시로 돌릴생각이거든오 내년에...
-
개인에게 맞는 적정 난이도나 강사가 밀리는거같은거 제외하고 순수하게 뭐가 더 좋음?
-
예전같았으면 지금 산화로 30명정도는 갔어
-
설연휴라 몰아서 엄청보냈네 ㅋㅋㅋ 와우
-
지듣노 3
-
10시간 정도 공부해서 채력이 꽤 떨어진 상태에서 풀어서 그런지 좀...
-
그러면 홍보를 이렇게 해야겠다 레어사세요~
-
가불기긴 해 5
사과하면 능력 부족 인정인 거고 안하면 이미지가 안 좋아지는 거니 저 분 아니더라도...
-
근데 정기달이 연상경 확률 좋게 쳐준거에서 무죄라 보는데 3
왜 욕처먹는거임? 입시해보면 알겠지만 99할로 붙는다 말해도 1퍼로 떨궈지는게...
-
나도 얶까ㅈㄴ했는데 커피팔이쉑이라고 그래도 대인배이시긴함 GOAT
-
25만 7퍼고 26부턴 3퍼인가 시립대 조경 가고 싶어서 생지하고 있는데 걍 사탐런해야겠다
-
고대교과 점공 1
이때 되면 최초합은 다 들어온건가요?
-
경제 사정이 좋지 않거나 방황하는 분들을 위해 무료 과외합니다. 무료라고 해서...
-
없음 말고~
-
외대 올해 점수대 전반적으로 보니까 학과 내에서 양극화가 더 심해졌네 모집단위가 더...
-
의견 궁금해요
-
같이 입시하는 친구들과 n빵해서 사세용 흐흐흐
-
국일만 사려고하는데, 위에 이미지중에 뭐 사야되나요?? 뭐,, 국정원으로...
-
컨설턴트가 확률로 얘기해주지 않음? 나는 파콜도 여기 몇프로 정도 될거다 이런식으로...
-
ㅇㅇ
-
짤려버림
-
결국 공증받았습니다. 12
저는 중앙대를 대표해 귀엽습니다. 또한 은행사거리 전체를 대표해 귀엽습니다. 반박...
-
추합 첨 받아봐서.. 나군 13명 모집 예비 6번 다군 8명 모집 예비 7번 인하대입니다
와아 첫 좋아요 감사합니다!!!! 잊지 않고 기억할께요오
오 감사합니다ㅎㅎㅎㅎ 더 필요하신거 있으실까요??
와 좋은 풀이네요
참고하겠습니다. 선생님 :)