[박주혁t] [4월학평21] 중복조합의 위력 (만점칼럼 - 두번째)
게시글 주소: https://i9.orbi.kr/0008250532
====================================================================
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭔가 발상이 어려웠음 쉬워보이는데 ㅋㅋㅋ
-
나 슬퍼
-
다 올라갈까요? 인원이 많아지다보니..
-
큐브 왤케 5
질문 안들어옴??
-
내 고질병이 8
가끔 좀 어려운 수학문제 만나면 집중력 급격히 흐려지면서 공부 의욕도 같이 사라짐...
-
휴 잠시 화가 8
진정
-
안녕?
-
31223 3은 높3이라는 가정이고 수학은 1컷
-
흠..
-
자습 감독쌤이 작수 미적 30번 풀고있길래 나도 복습하려고 책을 꺼냄 선생님께서...
-
중경외시도 가능할것같은데 국어때매 돌게씀 ㅋㅋㅋ 4등급 ㅋㅋㅋ
-
오류 정정 요청해도 받아들이질 않아요 1그람당 원자수가 몇개일지, 그정도 직관도 없습니까?
-
사문 질문 4
이앙기 등 농기계를 이용한 농법이 기존 농법을 대체하면서 갑국 농촌도 크게...
-
국립대 메리트가 4
등록금 싼거 말고 더 있나요? 같은 거리 같은 라인이고 등록금도 똑같다 치면 국립...
-
언매를 계속 풀어봐도 문법파트만 3개씩 틀리는데 이럴거면 화작가는게 맞는거 같아서..
-
ㅈㄴ 죽어라한다는가정하에
-
6모 64442가 반수로 12111 받는게 가능함? 1
아니 이거 풀다가 배탈나거나 뭐 msg 친거 아님? 아무리 머리거 좋아도 이게 상식적으로 가능한가?
-
심심하네 5
C_n의 중심을 O_n, P_n에서의 접선을 k라 하면,(k의 기울기는...
-
여자인척하는남자 7
가되고싶다
-
잡담알림어케꺼요 5
알림이수백개
-
한의대 수의대는 초고점 아니어도 자리 있는것 같은데 의치약은 만점권이여도 어려운것...
-
개꿀이잖아?
-
Start is half
-
✻H+3+ЯД✻7luCJIo0T6...<<장르가 ㅈㄴ 애매하네 0
뭐지 이게 phonk인가 아닌데
-
오픈채팅하는데 사진보고 보톡하면 다 여장갤러리 남자네
-
어어!
-
님들 미용실가서 그냥 깔끔하게 해달라하면 어케해줘요? 4
오늘 미용실 컷 다운펌 예약했는디 어떻게 해달라할지를 모르겠네
-
과외못구하면 9
알바해야겠지.. 학원 채점 질문알바말곤 안해봤는데 ... 어케 살아가지 진짜 모르겠다
-
나 아기 고3 2
응애
-
왜?
-
세종대 콘텐츠소프트웨어랑 인하대 데이터사이언스 둘중 어디를 가야할까요 단순히...
-
열심히 살껄 3
뭐햇냐 그동안 ㅜ
-
일이 너무 바빠서 점심시간에도 쉬지 못하고 계속 일하면서 인스턴트로 때우는...
-
치과 다녀왔어요 1
-
무휴학 삼수 0
지잡인데 학교 생활 + 원룸 생활하면서 공부하다 6월때부터 엑셀 밟는 게 좋을까요...
-
경제 수능특강(조아함) 사문 수능특강(좋음) 마더텅 경제 마더텅 사문 수2 노베...
-
꺄아아아악
-
글이 안 읽힘 2
두줄 넘어가면
-
재원생 입장에서 뭔가 재밌을것 같았음
-
25년 시작하고 첫 잡담글인데.. 예상은 했지만 추합력 낮으면 혹시나 했건만 원서를...
-
제목 한 번 신기하네 18
ㄹㅇ
-
글 읽은 본인이 무슨 과목 선택했는지 투표해주세요
-
제1 이온화 에너지는 Ne>F>N>O>Mg>Al>Na 인데 왜 제2 이온화 에너지는...
-
배린이 ㅇㅈ 4
배그해야지
-
안녕하세요...ㅠ 제목처럼 수능 볼 때 마다 비문학에서 우수수 털리는 n수생입니다...
-
난 찌개가 왤케 좋지 11
된찌 김찌 부찌
-
킅이 유니폼을 안내줘요
-
Qcc 쓴것도 아님
-
술 또 삼 4
감사합니다 ^^
중복조합으로 풀 수 있다는 생각은 못했는데.. 역시 대단하십니다 ㅋㅋ
감사감사~^^
아이들이 넘 이쁘네요
아프지 않으면 좋겠네요ㅠㅜ
주혁샘. 애들이 아픈것도 같이 아팠나봐요 ㅠㅠ. 항상 건강하길.! 좋은자료 잘 읽고갑니다. 조만간 밥한번먹어요 샘.!
네~ 건강이 최고지요^^
시험장에선 이렇게 못풀것같네요ㅠㅠ 작년7모 응시자로서 (ㅋ) 바둑돌문제는 그림을 그려보면 저렇게 중복조합 덩어리가 보였는데 자연수1.2.3....n 이렇게써놓고보면 전혀 그런생각이 안드네요ㅠ
해설강의에서도 이야기 했지만,
귀납적접근이 최우선순위입니다.
이 풀이같은 경우, 레벨업이 되면서 자연스럽게 보이는 것이고, 공부하게 되면 유사구조의 관계를 빠르게 파악할 수 있어요~ 부담갖지말고 읽어두시면 됩니다~
ㅎㅎ중복조합칼럼쓰시려햇군요
제가한 발 빨랏네요ㅎㅎ 21번문제 중복조합접근도 괜찬네용ㅎ
글고 둥이넘귀여워요흑흑
귀여워요^^ 아프지만 말아다오ㅠ
중복조합 저 문제 기출문제 중에 비슷한 거 있지 않나요?
마더텅에서 풀다가 해설 보고 헉 했었어요 ㅋㅋ
몇페이지 몇번인가요? 확인해볼께요~
맨 마지막 문제는 아마 작년인가 재작년인가 7월학평에 비슷한 거 있었던거 같네요
마지막문제는 작년 7월 학평 문제 맞아요^^
좋은글 감사합니다!!
도움이 되시면 좋겠어요^^
저도 시험장에서 중복조합으로 후딱 풀었죠 ㅋㅋㅋ
잘하셨습니다~
사진 커엽 ㅠㅠ
커엽? 귀엽다는 건가요? ㅋㅋ
이 문제를 중복조합으로 풀수 있다면 대단한 실력자겠는걸요 ㅋㅋ 저만 아는 줄 알았네~ 뭐 이래 ㅋㅋㅋㅋㅋ 좋은 칼럼 감사합니다. goat!!!
감사합니다^^
21번 첫번째 기본 풀이는 a를 기준을 case를 분류하는 것보다는 차가2n+1, 2n+2, 2n+3.... 이런식으로 case를 분류하는 것이 좀더 나아 보이네요 ㅋㅋ 오지랖 ㅋㅋㅋㅋ
밑에 세문제 각문제 연도랑몇월몇번 문젠지 알수잇을까요?
첫번째는 2006 수능 확통에 있을것 같고요.
두번째는 아마 제가 EBS문제를 살짝 손댄것 같네요.
세번째는 작년 7월 문과 30번/이과 21번 으로 기억합니다~