미적분1 자작
게시글 주소: https://i9.orbi.kr/0008341702
오류있으면 지적점여
+수정
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
헐 벌써.. 3
개...개강이라니... 내 방학은 어디간거지
게시글 주소: https://i9.orbi.kr/0008341702
오류있으면 지적점여
+수정
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
헐 벌써.. 3
개...개강이라니... 내 방학은 어디간거지
선라이크.
마지막에 잘못적었어요 ㅠㅠ f (x)의 x절편값이 최소일때로 생각해주세요
수정완료
f(0)이 음수인지 양수인지 나오면 더 깔끔하지않을까요오? 인터그랄f(x) -2에서 0까지가 max니까 기울기가 음수인 일차함수건가... (수정전)
(가)조건 잘 모르겠... 미2인줄알고 바로 e떠올렸는데ㅠㅠ 어캐 푸나요?
가 조건풀면 음수인지 양수인지 나와요
(가)조건이 로그가 정의되야 되는 조건이니까
밑이 0보다 크고 1이 아니어야되고 진수도 0보다 커야되니
g'(x)>0 g'(×)가 1아니고 g (x)>0 까지 뽑아내고
자연수가 되야하고 g (x)가 다항함수니까 g (x)차수를 k차로 잡고 (가)식= n (자연수)놓고 풀면 n,k가 나올거에요
그다음은 g'(x) ^n = g (x)또 풀고..
그다음은h 풀고.. g(x)찾는게 어려울거에요
23나옵니다 확인해주세요
오답
어떻게 푸셨나여
N=2나오고 g(x)는 2차 나오고 (가)조건 이용하면 g의 도함수는 1차고 f의 x절편이 최소가 되려면 (0,1)을 지나야 되니 g= 1/4(x+2)^2 나와서 y=0 x=2,-2 f( x) 로 둘러쌓인 넓이를 구했죠
(나)조건은 1차함수라고 해석해서 x+1나왔습니다
x절편 최대로 했어야 했네요.. ㅈㅅ 다 맞게푸신거 맞아여
g(x) 다항함수인건가요?
아 언급있네요 죄송함다
그리고 x절편이 최대일때 아닌가요 그럼 그때 x절편이 -1인데여
그럼 답 17/3 20나오네요
네네 맞아여.. 오늘 학교에서 생각나서 수정했는데 잘못적어도 제대로 알아 들으시네여 ㅋㅋ
ㅋㅋㅋㅋ 문제가 그럴 수 밖에 없더라구여 ㅋㅋㅋㅋ 이 문제 (나) 조건은 규토 미적에서 이미 나왔던 표현이군여.. 뭐 문제 전체를 평가하자면 전 제가 풀었던 자작 문제중 손꼽을 정도입니다 정말 참신하고 재밌었어요 ㅋㅋㅋㅋㅋ 이 문제 혹시 제가 타이핑해서 출처를 밝히고 써도 될까요 정말 좋았어요
네네 그럼여 저도 규토님 조건보고 썻어요 ㅋㅋ
원래의도가 작년 b형30번처럼 식하나만 주고 그 식에서 최대한 많이 조건을 뽑아내서 조각하나하나 맞추도록 하는 문제를 만드는 거였는데 제 생각엔 h결정하는게 좀 아쉬운듯 해요 x절편말고 참신한게 없을까..하는
저는 지금도 충분히 좋아요 ㅋㅋ 제가 이 문제를 처음 봤을때 조금 당황했거든요 ㅋㅋㅋ 상당히 생각할 게 많더라구요 ㅋㅋ g'(x)>1을 결국 유도하게 하는게 정말 좋았어요 이건 해설도 써봐야겠네요 굳굳입니다 ㅎ
감사함다 ㅎㅎ
아 그리고 타이핑쳐서 문제 만드실 거면 x=-2,2 와 y=f (x)로 둘러쌓인 부분 넓이보다
그냥 인테그랄 -2 ~ 2 |f (x)| 가 더 깔끔할 것 같아요 보시고 그냥 더 괜찮아 보이는걸로 만들어주세요
네네 ㅋㅋ 해서 올려드릴게여
올려드렸어요~