수학 자작 3문제 심심한 사람 풀어보셈
게시글 주소: https://i9.orbi.kr/0008354037
3번째는 기출 표현바꾸긴데 왠지 오류 있는듯 한 느낌이...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기상 1
-
이어폰,헤드셋 끼면 답답해서 노량진 고시촌가서 1인실독서실결제후 스피커사용해서 인강들을려고 합니다.
-
셋 다 나군이라서 고민되는데 이건 단국치가 맞음?
-
썸남/썸녀에게 "같이 별 보러 갈래?" 라고 말할 수 있고 낭만이 넘치는...
-
추합이라도 ㄱㄴ? 간절함
-
쪽팔려서 남들한테 성적 못 말하고 다닐듯
-
맞죠? 1컷 맞추기는 확통이 2배 이상 쉽다는데
-
이게 맞나 ㅋㅋㅋㅋㅋㅋ
-
체스 할사람 2
아직 안자는 옾붕이 있나요?
-
이 길의 끝이란 운명처럼 모두 네게 흐르고 있어
-
누구 자녀분이 들어가고싶다고 강력히 주장하기라도 하나?
-
언어 하나 배워두고 복수 전공으로 경영 같은거 같이하면 문과에선 경쟁력있고 ㄱㅊ않음?
-
난 1학년임 0학년이 될수도있다는게 개소름
-
기차지나간당 17
부지런행
-
늦은 나이에 대학을 다시 가야겠다고 결심하고, 컴컴한 밤까지 독서실에서 수능을...
-
경희대 자전 7칸은 말도안되는데 정상화빨리해줘
-
입시는 진짜 2
빨리 뜨는 사람이 승자
-
추천 좀…
-
디즈니랜드 가볼지말지
-
카의 인성면접 점수제 도입(수능 95%, 면접 5%) 성의 모집인원 50명으로 대폭 증가
-
대학교 들어가서 받는 교육이 훨씬 더 중요한거 같은데…
-
정시 64311 2
국어 백분위 33 수학 백분위 74 영어 3 한국지리 백분위 97 세계지리 백분위...
-
잠이 안온다 1
-
오늘 동기랑 7
카공하면서 재수 때 같이 다녔던 학원 이야기했는데 추억 돋고 재밌더라 금방 미화되는 듯
-
본인이 문자 그대로 똑같이 유지만 해도 수능 체제나 평가방식, 모집인원, 반영비 등...
-
사탐런 고민 8
이번에 생지 원점수 44,40인데 생명은 사실 여기서 더 잘볼 자신은 없고 지학은...
-
백분위 97~100 : 나 1등급인데.. ~~ 백분위 89~95 : 나...
-
원서영역 ㅁㅌㅊ 13
걍이대로ㄱ할까아님 걍 고대 질러버릴까 군수생임
-
증원이나 이런거까지 고려해봤을 때 어떤거같음? 나군에서 인설의 아닌 곳 쓸 곳이...
-
찾았다 0
한국사 -> 한검능 국어 -> LEET / PSAT / 7급 공무원 시험 국어 영역...
-
안된다고 해도 할거지만 정작 된다고 하면 의심함
-
오르비를 한다 < 한번 더 할 확률 50퍼 이상
-
안자는사람 손. 9
흠
-
ㅈㄱㄴ
-
시간이 갈수록 목표도 낮3 -> 높3 -> 낮2 이런 식으로 오르기도 했고...
-
일반학과들 작년에 비해 전체적으로 수시 경쟁률 높아졌던데 이유가 뭐임? 올해 수험생...
-
미쳤냐고함 당연함 이친구는 재수도 안함
-
1. 1년 더 한다고 전혀 오를것 같지 않음 2. 현장에서 운이 3~4번은 따름
-
5명인데 제 인간관계 좀 정상이 아닌거임? 왜이러냐 애들이 다들 군대가서 군오수...
-
241128같은 문제를 절대로 현장에서 풀 수 없을 것이 분명함
-
좀 고민이네
-
부모가 성적표 열람 11
부모가 제 동의없이 임의로 성적표 열람할 수 있나요???
-
. 14
-
정시저장소 ㅁㅌㅊ 14
이대로 고 ? 훈수좀 가군이 젤 고민되 (성대 의상은 걍 넣어봄 쟤만 빨간색이길래)
-
수학 사설에서 원래 높1 뜰 시험지에서도 실수만 한 3~4개 쳐박고 2컷~높3...
-
후후
-
두창시치때문에? 진짜 도움되는게하나도없네 ㅋㅋㅋㅋㅋㅋ
-
근데 댓글 반응 왜 다 좋음?? 얘가 빨린다고?? 범죄자가??
-
ㅠㅠ감사합니다
마지막문제 밑에서 4번째줄 이해가...
f (a)가 하나의 상수로 취급해서 k로 치환하면
x=k에서 함숫값=우극한인데 좌극한과는 같지않다
그래프로 표현하면 x<k은 y=0 x>=k 에서는 y=1
요런게 예가 될 수 있겟져
그런거라먄 좌극한부분 g (x)가빠잤네요 그래도 답은 모르겟다는 ㅋㅋ 모든 g (f(x))가 좌극한에서 끊어지는데 a에선 연속이라....
마지막에g•f (t) 함수에서 x=a 일때 연속인데 x가아니라 t인가요?
결국 합성함수 f 에서 g로 가는데 좌극한이 되면안되니 우극한,함숫값으로만 식이 결정되야되고
따라서 f (x)가 x=a에서 좌극한,우극한 취했을때 양쪽에서 둘다 감소하면서 떨어져야 f (a)+가 되요
극솟 값찾는 건데 이차함수 y=x^2에서 원점이 꼭짓점이잖아요 딱 그모양 생각하시면 됨
미적분 안배우셧으면 어려울수 있을듯 함수의 극한같지만 사실 미적분 문제에요
아 13은 12345254321
14는 12345454321 풀었습니다
첫번째문재는 아직 미적분안배워사 패스
네 ㅋㅋ 정답이에여 근데 14번 식 어떻게 세우셨나요? 원래 곱셈정리로 변AB구하고 점~직선으로 높이구하게 하는게 의도 였는데 친구들한테 풀어봐라 하니 다 다르게 풀더라고여..
13번도 계산 안하고 답 바로 보이셧나요?
1사분면 삼각형만봤을때 a3이랑 a4의 중점이 t/2,t/2이므로 원점과 직선사이는 t/2루트2
a3 a4 의 x값차이는 곱셈정리로 구하고 거기에 루트2 곱했네요
13번은 계산안했습니당
네 ㅎㅎ 완벽하게 푸셨네요 난 또 곱셈정리 생각하는게 너무 어려운가 싶었음 ㅋㅋ
역시 오르비가 다 수준이 높아여
맨 처음 문제에 (나)가 성립하려면 g(x)>0에서 항상 감소하고 g(x)<0에서 항상 증가해야하는데 (다) 때문에 그건 불가능 하기 때문에 일일이 넓이를 비교해주란 문제인가요? 출제의도를 잘 모르겠네요
(나)조건 부등식 왼쪽식이 정적분~급수에서 오른쪽 높이잡기 한거고 오른쪽이 정적분이라 정적분이 크려면 감소함수여야 하고
a가 양수만 되니까 x>0에서 g(x)는 감소함수다 라고 이끌어내길 바랐는데여
음..그렇기 할라했으면 부등식에 정적분 구간을 위끝아래끝에 임의의 양수 두개가 다성립한다 라고 해야 맞는건가요
극값이 존재하고 최고차항이 음수인 삼차함수 생각해보면 쭉감소하다가 증가하는 구간에 a가 걸쳐있어도 저 식 만족 할수 있는것 같네요
'임의의 서로다른 두양수 a,b에 대해 a~b까지 오른쪽 높이 잡기 한것보다 인테그랄 a~b가 항상 크면 그함수는 양의실수에서 감소함수이다'
이렇게 표현해야 하나요
일정한 구간에서 저게 성립한다는걸 보여주는게 나을 것 같아요.. 지금 조건 그대로 가면 감소함수라는걸 뽑아낼 수 없어요..