수학 자작 3문제 심심한 사람 풀어보셈
게시글 주소: https://i9.orbi.kr/0008354037
3번째는 기출 표현바꾸긴데 왠지 오류 있는듯 한 느낌이...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
해제 기한 (국회 가결 이후 n시간 이내~)이 없지 않음? 이거 이용해서 해제 질질 끌 거 같은데
-
왜 우리나라 우파는 자유의지주의가 없을까.
-
해제 요구안이 통과된 거지, 대통령이 무시하면 위헌 계엄일 순 있어도 효력은 계속...
-
(필자는 윤빠가 아님)
-
용산이 침묵하는 이 시각…청사 나서는 한덕수 국무총리 2
[앵커] 한덕수 국무총리는 알았을까요? 오늘(4일)의 계엄 선포, 어떻게 봅니까?...
-
가채점표로는 한칸씩 밀려써져있네.. 진짜 성적표 나오기 전까지 진짜 너무...
-
아이고..
-
윤석열은 ㅂㅅ이 맞다 근데 이재명은 진짜 못 뽑겠다
-
왜아무말이없어
-
막상 끝나니 ‘설마 진짜 이게 끝?’이란 생각이 드네
-
이재명 체포하려고 사무실 들어갔는데 이미 e선마로 낭낭하게 국회 입갤중이었던 ㄷㄷ
-
윤카 안뽑은 이유가 여실히 드러남
-
윤 + 국방장관 귝방장관은 군인들을 자아가 없는 자기 말에 절대복종을 할 거라 생각...
-
과외 하다가 반수하게 되면 보통 언제쯤 말씀드리나요? 0
어떻게 진행하시나요?
-
미쳤다
-
화1.2는 하이탑으로 일반은 줌달 유기는 모르겠어요 대학 가기 전에 다 끝내고 가고...
-
뒤에서 비밀스럽게 뭐 하는거 아닌가 성동격서라는 말도 있는데.... 너무 음모론적인가
-
???????
-
"누가 선포했는데"
-
탱크엔딩아니면 탄핵되는 일만 남았다고 봐도 되죵?
-
안 자는 사람 손 15
댓 남겨봐요. 왜 안 주무시나요??
-
이건 중도 보수를 떠나서 여당 대표도 반대하고 국회 만장일치 나올만큼 옳고그름이...
-
계엄 해제 요구 가결에 “만세”…시민 2000명 집결, 국회 지켰다 [영상] 1
3일 윤석열 대통령이 44년 만에 비상계엄을 선포했다는 소식에 서울 여의도 국회...
-
그 전설의 노루 점핑이 윤석열임?
-
지금 이 상황 자체가 뉴스에 생중계 되고 있다는거 자체가 엉성한 계엄. 라떼는...
-
"尹정부가 계엄 준비" 홀로 외치던 김민석 재조명...미리 알았나 1
윤석열 대통령이 3일밤 비상계엄을 전격 선포하자 지난 8월부터 '현 정부가 계엄령을...
-
대통령 능지는 둘째치고 국방부장관도 능지박살이라는 말이되는데 이건 말이안될거같은데
-
ㅅㅂ?
-
이렇게 허술하다고 난 뭔가 더 있다고 본다
-
내가 윤석열보다 똑똑함
-
실시간 바로 묻혀버림 ㅋㅋ 정상화의 신 대석열
-
플랜C는 뭐냐
-
임기 절반밖에 안했는데도 기억에 빡 남네
-
다들잘자 5
굿나잇이야
-
여름방학을 1주일 해서
-
거의 끝나긴 했는데
-
잘까 그냥 0
에휴 이나라가 그럼 그렇지. . .
-
알코올 밈은 치워두고 그래도 이렇게 될 줄 알고 세운 계획이나 다른 생각이 있어서...
-
음모론 제외하면 순수 멍청 이슈 말고는 설명이 안되니까 3
오히려 뭔가 숨겨진 스토리가 있나 의심하게 됨 아무리 멍청해도 이렇게까지 멍청한 짓을 할까
-
기출 모의고사 복습 귀찮으신가요? 모플 한번 써보실래요? 0
안녕하세요 쉽고 빠른 모의고사 복습, 모플의 개발자 라쿠입니다. 모플은 쉽고 빠른...
-
그냥 이렇게 어설프게 한다고?? 꿍꿍이가 있을수도 있겠지만 그것보단 다른 이유가...
-
대체 어느정도의 베일에 쌓여있길래 계엄령을….
-
윤석열 얘기만 4시간 하다가 집오겠네
-
미안해 관심 좀 줄게
-
와....
-
이대로라면 국회에서 윤석열 대통령 탄핵 소추하고 헌재에서 의결하는건 시간문제인거...
-
ㅎㅎ
마지막문제 밑에서 4번째줄 이해가...
f (a)가 하나의 상수로 취급해서 k로 치환하면
x=k에서 함숫값=우극한인데 좌극한과는 같지않다
그래프로 표현하면 x<k은 y=0 x>=k 에서는 y=1
요런게 예가 될 수 있겟져
그런거라먄 좌극한부분 g (x)가빠잤네요 그래도 답은 모르겟다는 ㅋㅋ 모든 g (f(x))가 좌극한에서 끊어지는데 a에선 연속이라....
마지막에g•f (t) 함수에서 x=a 일때 연속인데 x가아니라 t인가요?
결국 합성함수 f 에서 g로 가는데 좌극한이 되면안되니 우극한,함숫값으로만 식이 결정되야되고
따라서 f (x)가 x=a에서 좌극한,우극한 취했을때 양쪽에서 둘다 감소하면서 떨어져야 f (a)+가 되요
극솟 값찾는 건데 이차함수 y=x^2에서 원점이 꼭짓점이잖아요 딱 그모양 생각하시면 됨
미적분 안배우셧으면 어려울수 있을듯 함수의 극한같지만 사실 미적분 문제에요
아 13은 12345254321
14는 12345454321 풀었습니다
첫번째문재는 아직 미적분안배워사 패스
네 ㅋㅋ 정답이에여 근데 14번 식 어떻게 세우셨나요? 원래 곱셈정리로 변AB구하고 점~직선으로 높이구하게 하는게 의도 였는데 친구들한테 풀어봐라 하니 다 다르게 풀더라고여..
13번도 계산 안하고 답 바로 보이셧나요?
1사분면 삼각형만봤을때 a3이랑 a4의 중점이 t/2,t/2이므로 원점과 직선사이는 t/2루트2
a3 a4 의 x값차이는 곱셈정리로 구하고 거기에 루트2 곱했네요
13번은 계산안했습니당
네 ㅎㅎ 완벽하게 푸셨네요 난 또 곱셈정리 생각하는게 너무 어려운가 싶었음 ㅋㅋ
역시 오르비가 다 수준이 높아여
맨 처음 문제에 (나)가 성립하려면 g(x)>0에서 항상 감소하고 g(x)<0에서 항상 증가해야하는데 (다) 때문에 그건 불가능 하기 때문에 일일이 넓이를 비교해주란 문제인가요? 출제의도를 잘 모르겠네요
(나)조건 부등식 왼쪽식이 정적분~급수에서 오른쪽 높이잡기 한거고 오른쪽이 정적분이라 정적분이 크려면 감소함수여야 하고
a가 양수만 되니까 x>0에서 g(x)는 감소함수다 라고 이끌어내길 바랐는데여
음..그렇기 할라했으면 부등식에 정적분 구간을 위끝아래끝에 임의의 양수 두개가 다성립한다 라고 해야 맞는건가요
극값이 존재하고 최고차항이 음수인 삼차함수 생각해보면 쭉감소하다가 증가하는 구간에 a가 걸쳐있어도 저 식 만족 할수 있는것 같네요
'임의의 서로다른 두양수 a,b에 대해 a~b까지 오른쪽 높이 잡기 한것보다 인테그랄 a~b가 항상 크면 그함수는 양의실수에서 감소함수이다'
이렇게 표현해야 하나요
일정한 구간에서 저게 성립한다는걸 보여주는게 나을 것 같아요.. 지금 조건 그대로 가면 감소함수라는걸 뽑아낼 수 없어요..