순열과조합 확통 공부방향
게시글 주소: https://i9.orbi.kr/0008908469
12를진동하는 3월2 4월1 6월2 7월1 고3현역입니다
순열과조합 확통 공부법에 대해 질문드립니다
기출은 자이 한 5번은 본거같은데.. 왜 이렇게 확통을 못할까요 ㅜㅜ
인강을들을까요? 답을주세요..ㅠㅠ
신승범 확통이 좋다는데 ..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
홍대병 씨게 걸려서 패딩이 하나도 없음 자라매장에서 좀 전에 폴리코트 하나 너무...
-
고1입학할 때 옆자리에 일찐녀랑 짝꿍이 됬는데 내가 만만했던지 날 의자취급하더라...
-
의대 망했다면서 다들 메쟈의 목표로 반수함.. 올해 경북의 그분도 결국 메쟈의...
-
Riesz representation theorem 3
Schur's theorem Gram-schmidt orthogonalization...
-
수학 난이도 어땠음?
-
현역때 35343으로 덕성여대 붙었는데 24221로 덕성여대를 가..? 수학이 많이...
-
신검받으러가요 9
귀찮네요
-
한심한 2
나!
-
지구 노베고 오지훈쌤 들으려면 메가패스 구매해야하는데 그냥 이훈식쌤 듣는게...
-
3수하면 슬픈점 3
내가 군대다녀오면 나랑 동갑인 사람중에 대학을 졸업하는 사람이 나온다는 거임..
-
한지 vs 사문 1
현재 사탐런을 준비하고 있는 예비고3입니다. 평소 구글어스로 다져진 세지 관련...
-
안정적으로 될까요 아니면 좀 빡센가요
-
물리 잘 6
할거 같이 생긴 나
-
장난전화 0
-
1년전이랑 똑같은글 썼는데 똑같은반응이 있음,,,,,,
-
대학원생 아저씨입니다. 재작년 쯤부터 입시철마다 물리학과/자연대/공대 진학 관련...
-
독서 배경지식 쌓을려고 교과서 읽는 건 어떻게 생각하세요? 2
중학교, 고등학교때 뭘 하고 왔는지 관련 지식이 떠오르지가 않네요... 젠장할...
-
. 2
근데 가끔 친하진 않지만 근황이 그리운 사람이 있는듯 ㅋㅋ 저도 그 중에 포함되는...
-
대가로 내 이미지가 곱창날거 같긴한데..
-
근데 진짜 이감 성적이랑 수능 성적이랑 거의 상관이 없나봄 1
상관이 있어봤자 고득점하면 한 수능날 3등급 이상은 맞는다 이 정도 근데 아무짝에...
-
크럭스나 피오르 1
당일날 미리 대기타고 파바박 해도 실패 할 확률이 있는거죠...? 하 너무 절실한데 ㅠㅠ
-
약간 잠긴 목소리 이것부터가 분위기 압도하네 걍
-
나머지는 그냥 2하는거 추천 특히 물2화2는 대학다니는 공붕이들이 다시 공부하기에...
-
내투자철학임
-
여르비 ㅇㅈ 8
군필여고셍
-
주제넘게 사람살리는 의사 되려고 나대지 말라는거임 니가 특출난 사람이 아니고...
-
님들 어그로 죄송한데 김범준 커리 탈까요 현우진 커리 탈까요 올해 수능 81점(20...
-
하 시발 악몽꿈 0
수능 이미 좆망했는데 수능장에서 허둥대는 악몽꿈ㅋㅋ
-
어차피 설명의무를 다하지 않았다는 판결 그거 그냥 꼬투리잡고 도의적 배상하라는...
-
연고대 가고싶다 0
제발 사탐이들에게 구원을
-
병훈T 강의가 곧 사라진다는 사실이 너무나 아쉽네
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
n년을 쏟아부었는데 올해도 안될것 같네요 정시의대는 진짜 미친짓인것 같습니다
-
책 추천해주세요 7
경제 관련된 걸로
-
님들이라면 어디 가심
-
ㅈㄴ 생산적인데 시간도 잘감
-
텔그살말 2
7만7천원 내고 궁금증을 해소함과 동시에 정신병을 얻기
-
"카세트를 오디오에 넣고 스위치. 카세트를 오디오에 넣고 스위치. 카세트를 오디오에...
-
난 사실 미소녀 12
겠냐 왜 들어옴?
-
보통 가천대 준비히면 학원들 다니길래
-
지사의랑 입결 비슷한가요
-
내년에 또 할거같은데 목표는 메디컬임 올해 수능 화학 47점 맞음..2컷 점수고...
-
쉬워서 할말이없네ㅋㅋㅋㅋ
-
개찝찝하네 이거 어캄 피부병걸리는거아님?
-
가천대논술 5
나만 어려웠냐..?
-
아니면 이조차도 이룰수없는 꿈인가
-
움짤 투척 4
짱 이쁘당
여러 선생님 들어본 경험으로는 신승범 확통은 호불호가 극명하게 갈림
아..진ㅉ요?? 불호들은 왜 싫대요..?ㅠㅠ
맛보기를 들어보세요~ 전 몇년 전에 들은거긴 한데 경우의 수를 구하는데 생각의 방향?이 좀 다른 선생님들과 달라서 저는 안들었었어요
저는 확통같은경우 전혀 접근하지 못하는 문제는 없다고봐요
주로 조건을 놓치거나 실수를 해서 틀리는데 그렇기 때문에 확통을 잘하는 방법은 그냥 많이 풀어보고 많이틀려보는 수밖에 없다고 생각해요
어떻게보면 투자대비 효율이 낮다고 할까요
순열과 조합이 어렵게 느껴지는 대부분의 경우는 합의 법칙과 곱의 법칙에 대한 이해 다시말해 경우의수 구하는 과정에서 언제 더할지 언제 곱할지에 대한 명확한 구분이 되지 않기 때문이라고 볼 수 있어요. 사실 현역시절 가장 힘들었던 부분이기도 하구요. 이에 대해 간단히 설명하면 합의 법칙의 경우일반적으로 우리가 수능에서 접하는 문제들은 더하는 것 끼리 '배타성'을 가져야한다는 원칙과 (2의배수 3의배수 문제같은 경우 논외) 곱의 법칙의 경우 문제에서 요구하는 하나의 사건이 만들어지지 않은 경우에는 서로 곱한다는 원칙을 잊지 마셨으면 해요. 다만 곱의 법칙 같은 경우에는 (특히 순열논리) 앞서 고려했던 부분에 대해서는 다음번에 고려해선 안된다는 점에 유의하시면 좋을듯해요. 혹시 이해가 안가시거나 궁금한점 있으시면 쪽지 보내주세요
김성은확통 갑